Строение генератора


Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, - как работает генератор? - мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.


Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Автомобильный генератор - как работает, из чего состоит и устройство

Генератор - основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения.

Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках.

Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции - еще на цилиндрической части над лобовыми сторонами обмотки статора.

1 - крышка со стороны контактных колец; 2 - выпрямительный блок; 3 - статор; 4 - задний подшипник; 5 - ротор; 6 - гайка; 7 - пружинная шайба; 8, 10, 13 - шайба; 9 - шкиф; 11 - вентилятор; 12 - стяжной болт; 14 - крышка со стороны привода; 15 - передний подшипник; 16 - крышка подшипника; 17 - шпонка; 18 - регулятор напряжения; 19 - болт. На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 - сердечник; 2 - обмотка; 3 - пазовый клин; 4 - паз; 5 - вывод для соединения с выпрямителем.

Статор набирается из стальных листов толщиной 0.8...1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а - в сборе; б - полюсная система в разобранном виде; 1,3- полюсные половины; 2 - обмотка возбуждения; 4 - контактные кольца; 5 - вал.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т. к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец - обычно плотная, со стороны привода - скользящая, в посадочное место крышки наоборот.

Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места - к выпрямителю и регулятору напряжения.

Система охлаждения: а - устройства обычной конструкции; б - для повышенной температуры в подкапотном пространстве; в - устройства компактной конструкции. Стрелками показано направление воздушных потоков. На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации - изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Некоторые модели выносных регуляторов имеют ручные переключатели (зима/лето).

Как работает генератор?

Генераторы — это полезные устройства, которые обеспечивают подачу электроэнергии во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание деловых операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию для принудительного перемещения электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, если рассматривать генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, протекающую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что описанный выше поток электрических зарядов может быть вызван перемещением электрического проводника, такого как проволока, содержащая электрические заряды, в магнитном поле. Это движение создает разность потенциалов между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в целом классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка/рама
Описание основных компонентов генератора приведено ниже.
Двигатель

Двигатель является источником входной механической энергии для генератора. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может обеспечить генератор. Есть несколько факторов, которые необходимо учитывать при оценке двигателя вашего генератора. Следует проконсультироваться с производителем двигателя для получения полных технических характеристик двигателя и графиков технического обслуживания.

(a) Тип используемого топлива. Генераторные двигатели работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженной или газообразной форме) или природный газ. Двигатели меньшего размера обычно работают на бензине, а двигатели большего размера работают на дизельном топливе, сжиженном пропане, пропановом газе или природном газе. Некоторые двигатели также могут работать на двух видах топлива: дизельном и газовом.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV. Двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускной и выпускной клапаны двигателя расположены в головке цилиндра двигателя, а не установлены на двигателе. блокировать. Двигатели с верхним расположением клапанов имеют ряд преимуществ перед другими двигателями, например:

• Компактный дизайн
• Упрощенный рабочий механизм
• Прочность 90 075 • Удобен в работе
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако двигатели с верхним расположением клапанов также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя – CIS представляет собой накладку в цилиндре двигателя. Снижает износ и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены CIS, но важно проверить эту функцию в двигателе генератора. CIS — недорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

 

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность на основе механического входа, поступающего от двигателя. Он содержит сборку неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, что, в свою очередь, генерирует электричество.

(a) Статор – это неподвижный компонент. Он содержит набор электрических проводников, намотанных в витках на железный сердечник.

(b) Ротор/Якорь – это подвижный компонент, создающий вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционный генератор. Известны как бесщеточные генераторы переменного тока, которые обычно используются в больших генераторах.
(ii) Постоянные магниты — обычно используются в небольших генераторах переменного тока.
(iii) С помощью возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через узел токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое индуцирует разность потенциалов между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

Ниже приведены факторы, которые необходимо учитывать при оценке генератора переменного тока генератора:

(a) Металлический корпус в сравнении с пластиковым. Цельнометаллическая конструкция обеспечивает долговечность генератора переменного тока. Пластиковые корпуса со временем деформируются, что приводит к оголению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция. Генератор переменного тока, в котором не используются щетки, требует меньше обслуживания, а также производит более чистую энергию.

 

Топливная система

Объем топливного бака обычно достаточен для поддержания работы генератора в среднем от 6 до 8 часов. В случае небольших генераторных установок топливный бак является частью основания генератора или устанавливается на верхней части рамы генератора. Для коммерческого применения может потребоваться установка внешнего топливного бака. Все такие установки подлежат утверждению Департаментом городского планирования. Щелкните следующую ссылку для получения дополнительной информации о топливных баках для генераторов.

К общим характеристикам топливной системы относятся следующие:

(a) Соединение трубопровода от топливного бака к двигателю. Подающая линия направляет топливо из бака в двигатель, а обратная линия направляет топливо из двигателя в бак.

(b) Вентиляционная трубка топливного бака. Топливный бак имеет вентиляционную трубку для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака следите за металлическим контактом между заправочным пистолетом и топливным баком, чтобы избежать искрения.

(c) Перепускной штуцер от топливного бака к сливной трубе – Это необходимо для того, чтобы любой перелив во время заправки бака не привел к проливанию жидкости на генераторную установку.

(d) Топливный насос – перекачивает топливо из основного бака хранения в расходный бак. Топливный насос обычно имеет электрический привод.

(e) Топливный водоотделитель/топливный фильтр — отделяет воду и посторонние частицы от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка – распыляет жидкое топливо и впрыскивает необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как видно из названия, этот компонент регулирует выходное напряжение генератора. Механизм описан ниже для каждого компонента, который играет роль в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток. Регулятор напряжения потребляет небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбуждения.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный ток. Обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток. Обмотки возбудителя подключены к устройствам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный – они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор/якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора/якоря.

(4) Ротор/якорь: преобразование постоянного тока в переменное напряжение. Ротор/якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения производит меньший постоянный ток. Как только генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки к генератору его выходное напряжение немного падает. Это приводит в действие регулятор напряжения, и начинается описанный выше цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет исходной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Постоянное использование генератора приводит к нагреву его различных компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, образующегося в процессе.

Необработанная/пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше. Водород иногда используется в качестве хладагента для обмоток статора крупных генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему рядом с очень крупными генераторами и небольшими электростанциями часто стоят большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генератор и работают как первичная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости генератора. Систему охлаждения и насос сырой воды следует промывать через каждые 600 часов, а теплообменник следует чистить через каждые 2400 часов работы генератора. Генератор следует размещать в открытом и проветриваемом помещении с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) предписывает, чтобы со всех сторон генератора оставалось минимальное пространство в 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы генератора ничем не отличаются от выхлопных газов любого другого дизельного или бензинового двигателя и содержат высокотоксичные химические вещества, с которыми необходимо правильно обращаться. Следовательно, необходимо установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя не подчеркнуть, поскольку отравление угарным газом остается одной из наиболее распространенных причин смерти в районах, пострадавших от ураганов, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно крепятся к двигателю с помощью гибких соединителей, чтобы свести к минимуму вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба выходит наружу и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не соединена с выхлопной системой любого другого оборудования. Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для работы вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местные законы и защищаете от штрафов и других санкций.


Система смазки
Поскольку генератор содержит движущиеся части двигателя, ему требуется смазка для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе. Вы должны проверять уровень смазочного масла каждые 8 ​​часов работы генератора. Вы также должны проверять наличие утечек смазки и заменять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
st e art Функция генератора работает от батареи. Зарядное устройство батареи поддерживает заряд батареи генератора, подавая на нее точное «плавающее» напряжение. Если плавающее напряжение очень низкое, аккумулятор останется недозаряженным. Если плавающее напряжение очень высокое, это сократит срок службы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением плавающего напряжения для свинцово-кислотных аккумуляторов. Зарядное устройство имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, содержащий положения для электрических розеток и элементов управления. В следующей статье приведены дополнительные сведения о панели управления генератора. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают генератор при отключении электроэнергии, контролируют работу генератора и автоматически выключают агрегат, когда он больше не нужен.

(b) Датчики двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и контроль этих параметров обеспечивает встроенную функцию отключения генератора, когда какой-либо из них превышает соответствующие пороговые уровни.

(c) Генераторные датчики – На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие органы управления — среди прочего, переключатель фаз, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим).

 Основной узел/рама

Все генераторы, как переносные, так и стационарные, имеют специальные корпуса, обеспечивающие структурную поддержку основания. Рама также позволяет заземлить генератор в целях безопасности.

Генератор принципов и структур | PengPeng of Science and Art

Генератор принципов и структур | Пэнпэн науки и искусства
 
 
 
     
  Принцип действия и структура генератора  
 

Генератор является основным вспомогательным оборудованием чистой энергии. Эта колонка знакомит с принципом работы и моделью генератора переменного тока, структурой различных генераторов переменного тока, принципом и структурой трансформатора.

Для получения дополнительной информации о генераторах с постоянными магнитами, генераторах с двойным явно выраженным полюсом и реактивных генераторах посетите соответствующий раздел.

 
     
   
Принцип генератора
Основанные на физической электромагнетизме, основные принципы и основные компоненты генераторов представлены с помощью учебного программного обеспечения 3D-анимации: магнитное поле, прямоугольная катушка, токосъемное кольцо, щетка и так далее.
 
         
   
Однофазный генератор переменного тока Модель
Представьте структуру и состав модели однофазного генератора переменного тока с постоянными магнитами для науки или обучения.
 
         
   
Принцип генератора с вращающимся магнитным полем
представлены основные принципы и основные компоненты генератора вращающегося поля: ротор, вращающееся магнитное поле, катушка статора, контактное кольцо, щетка и т. д.
 
         
   
Принцип работы трехфазного генератора
Представлены основные принципы и основные компоненты трехфазного генератора переменного тока: статор, катушка статора, ротор, контактное кольцо, щетка и так далее.
 
         
   
Модель трехфазного генератора
Представьте структуру и состав модели трехфазного генератора переменного тока для популяризации науки.
 
         
   
Обмотки двигателя переменного тока
Знакомит с увеличенным чертежом обмоток двигателя переменного тока, базовыми знаниями об обмотках и обмотках однофазного двигателя.
 
         
   
Обмотки трехфазного двигателя переменного тока
Познакомить с принципом обмотки трехфазных двигателей переменного тока и чертежом расширения обмотки с несколькими трехфазными двигателями переменного тока.

Learn more


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)