Что такое активная безопасность автомобиля


Системы активной безопасности

Помимо повышения и улучшения эксплуатационных и технических показателей автомобилей, конструкторы уделяют немало внимания обеспечению безопасности. Современные технологии позволяют оснастить машины значительным количеством систем, которые обеспечивают контроль поведения авто в экстренных ситуациях, а также максимально возможную защиту водителя и пассажиров от получения травм при ДТП.

Какие системы безопасности бывают?

Самой первой такой системой на авто можно считать ремни безопасности, которые длительное время оставались единственным средством защиты пассажиров. Сейчас же авто комплектуется десятком и более всевозможных систем, которые подразделяются на две категории безопасности – активной и пассивной.

Активная безопасность автомобиля направлена на возможное устранение аварийной ситуации и сохранение контроля за поведением авто в экстренных случаях. Причем они действуют автоматически, то есть, вносят свои коррективы несмотря на действия водителя.

Пассивные же системы направлены на уменьшение последствий при случившейся аварии. К ним относятся ремни, подушки и шторки безопасности, специальные системы крепления детских сидений.

Активная безопасность

Первой системой активной безопасности на авто является антиблокировочная (АБС). Отметим, что она также выступает основой для многих видов активных систем.

В целом, на автомобилях могут использоваться такие системы активной безопасности, как:

  • антиблокировочная;
  • противобуксовочная;
  • распределения усилий на тормозах;
  • экстренного торможения;
  • курсовой устойчивости;
  • обнаружения препятствий и пешеходов;
  • блокировки дифференциала.

Многие автопроизводители патентуют свои системы. Но в большинстве своем они работают по единому принципу, и разница сводится лишь к названиям.

ABS

Антиблокировочная система, пожалуй, единственная, которая у всех автопроизводителей обозначается одинаково – аббревиатурой ABS. В задачу АБС, как понятно из названия, входит предотвращение полной блокировки колес во время торможения. Это в свою очередь не дает колесам потерять контакт с полотном дороги, и авто не уходит в юз. АБС является частью тормозной системы.

Суть функционирования АБС сводится к тому, что блок управления посредством датчиков отслеживает скорость вращения каждого колеса и при определении, что одно из них замедляется быстрее других, посредством исполнительного блока сбрасывает давление в магистрали этого колеса, и оно перестает замедляться. АБС действует полностью автоматически. То есть, водитель, как обычно, просто нажимает на педаль, а АБС уже самостоятельно контролирует процесс замедления всех колес по отдельности.

ASR

Противобуксовочная система направлена на предотвращение пробуксовки ведущих колес, что исключает уход авто в занос. Работает она на всех режимах движения, но имеет возможность отключения. Разные автопроизводители эту систему обозначают по-разному – ASR, ASC, DTC, TRC и другие.

Работает ASR на базе ABS, то есть она воздействует на тормозную систему. Но дополнительно она управляет также электронной блокировкой дифференциала и некоторыми параметрами силовой установки.

При небольшой скорости ASR отслеживает, посредством датчиков ABS, скорость вращения колес и если отмечается, что одно из них вращается быстрее, то просто притормаживает его.

На высоких же скоростях ASR подает сигналы на ЭБУ, а тот в свою очередь регулирует работу силовой установки, обеспечивая снижение крутящего момента.

EDB

Распределение тормозных усилий – это не полноценная система, а лишь расширение функционала ABS. Но все же она имеет свое обозначение – EDB или EBV.

Она выполняет функцию предотвращения блокировки колес задней оси. При торможении центр тяжести авто смещается на передок, из-за чего задние колеса получаются разгруженными, поэтому для их блокировки требуется меньше усилия тормозных механизмов. При торможении EDB задействует задние тормоза с небольшой задержкой, а также следит за усилием, создаваемым на тормозных механизмах колес, и предотвращает их блокировку.

BAS

Система экстренного торможения необходима для максимально эффективного срабатывание тормозов при резком торможении. Она обозначается разными аббревиатурами – BA, BAS, EBA, AFU.

Эта система бывает двух типов. В первом варианте она не задействует ABS, а суть работы BA сводится к тому, что она отслеживает скорость перемещения штока тормозного цилиндра. И при обнаружении его быстрого движения, что бывает, когда водитель «бьет» по тормозам в экстренном случае, BA задействует электромагнитный привод штока, дожимая его и обеспечивая максимальное усилие.

Во втором варианте BAS работает вместе с ABS. Здесь все работает по описанному выше принципу, но исполнение несколько иное. При определении экстренного торможения она подает сигнал на исполнительный механизм ABS, а тот создает максимальное давление в тормозных магистралях.

ESP

Система курсовой устойчивости направлена на стабилизацию поведения авто и сохранения направления движения при возникновении внештатных ситуаций. У разных автопроизводителей она обозначается как ESP, ESC, DSC, VSA и прочие.

По сути, ESP представляет собой комплекс, включающий в себя ABS, BA, ASR, а также электронную блокировку дифференциала. Также для работы она использует системы управления силовой установкой и АКПП, в некоторых случаях также и датчики угла поворота колес и руля.

Все вместе они постоянно оценивают поведение авто, действия водителя и при обнаружении каких-либо отклонений от параметров, которые считаются нормой, вносят необходимые коррективы в режим работы систем двигателя, КПП, тормозов.

PDS

Система предотвращения столкновения с пешеходами контролирует пространство перед авто и при обнаружении пешеходов в автоматическом режиме включает тормоза, обеспечивая замедление авто. У автопроизводителей она обозначается как PDS, APDS, Eyesight.

PDS является сравнительно новой и применяется она далеко не всеми производителями. Для работы PDS используются камеры или радары, а в качестве исполнительного механизма выступает BAS.

EDS

Электронная блокировка дифференциала работает на базе ABS. В ее задачу входит предотвращение пробуксовки и повышение проходимости за счет перераспределения крутящего момента на ведущих колесах.

Отметим, что EDS работает по тому же принципу, что и BAS, то есть она с помощью датчиков фиксирует скорость вращения ведущих колес и при выявлении повышенной скорости вращения на одном из них, задействует тормозной механизм.

Системы-ассистенты

Выше описаны только основные системы, но активная безопасность автомобиля включает еще ряд вспомогательных, так называемых «ассистентов». Их количество тоже немалое, и к ним относятся такие системы как:

  • Парковки (парктроники облегчают постановку авто на стоянку в условиях ограниченного пространства);
  • Кругового обзора (камеры, установленные по периметру, позволяют контролировать «слепые» зоны);
  • Круиз-контроля (позволяет авто удерживать заданную скорость, без участия водителя);
  • Аварийного рулевого управления (позволяет в автоматическом режиме избежать автомобилю столкновения с препятствием);
  • Помощи движению по полосе (обеспечивает движение авто исключительно по заданной полосе);
  • Помощи при перестроении (контролирует слепые зоны и при изменении полосы движения сигнализирует о возможном препятствии);
  • Ночного виденья (позволяет контролировать пространство вокруг авто в темное время суток);
  • Распознавания дорожных знаков (распознает знаки и информирует водителя о них);
  • Контроля усталости водителя (при обнаружении признаков усталости водителя сигнализирует о необходимости отдыха);
  • Помощи при начале движения со спуска и в подъем (помогает начать движение не используя тормоза или ручник).

Это основные ассистенты. Но конструкторы постоянно совершенствуют их и создают новые, повышая общее количество систем авто, обеспечивающих безопасность во время движения.

Заключение

В современном автопроизводстве активная безопасность играет значительную роль для сохранения здоровья людей в автомобиле и вне его, а также исключает множество ситуаций, которые раньше привели бы к повреждению авто. Поэтому не стоит недооценивать их значимость и пренебрегать наличием таких помощников в комплектации.

Но самое главное, в первую очередь все зависит от водителя, он должен следить чтоб все пользовались ремнями безопасности и здраво понимать с какой скоростью необходимо ехать в данный момент. Не стоит напрасно рисковать, когда в этом нет необходимости!

Безопасность автомобиля

Безопасность зависит от трех важных характеристик автомобиля: размер и вес, средства пассивной безопасности, которые помогают выжить в аварии и избежать травм, и средства активной безопасности, которые помогают избегать дорожных происшествий. Однако при столкновении более тяжелые машины с относительно плохими оценками в краш-тестах могут показать лучшие результаты, чем легкие автомобили с отличными оценками. В компактных и малых автомобилях погибает в два раза больше людей, чем в больших. Об этом стоит всегда помнить.

Пассивная безопасность

Средства пассивной безопасности помогают водителю и пассажирам выжить в аварии и остаться без серьезных травм. Размер автомобиля – это тоже средство пассивной безопасности: больше = безопаснее. Но есть и другие важные моменты.

Ремни безопасности стали лучшим из когда-либо придуманных устройств защиты водителя и пассажиров. Здравая идея привязать человека к сиденью, чтобы спасти ему жизнь при аварии, появилась еще в 1907 году. Тогда водителя и пассажиров пристегивали только на уровне талии. На серийных автомобилях первой ремни поставила шведская компания Volvo в 1959 году. Ремни в большинстве машин трехточечные, инерционные, в некоторых спортивных автомобилях используются и четырехточечные и даже пятиточечные, чтобы лучше удержать водителя в седле. Ясно одно: чем плотнее тебя прижимает к креслу, тем безопаснее. Современные системы ремней безопасности имеют автоматические преднатяжители, которые при аварии выбирают провисания ремней, повышая защиту человека, и сохраняют место для раскрытия подушек безопасности. Важно знать, что хотя подушки безопасности и защищают от серьезных травм, ремни безопасности абсолютно необходимы для обеспечения полной безопасности водителя и пассажиров. Американская организация безопасности движения NHTSA на основании своих исследований сообщает, что использование ремней безопасности снижает риск смертельного исхода на 45-60% в зависимости от типа автомобиля.

Работа подушек безопасности

Без подушек безопасности в машине никак нельзя, этого теперь не знает только ленивый. Они нас и от удара спасут, и от разбитого стекла. Но первые подушки были как бронебойный снаряд – раскрывались под воздействием датчиков удара и выстреливали навстречу телу со скоростью 300 км/ч. Аттракцион на выживание, да и только, не говоря уже о том ужасе, который испытывал человек в момент хлопка. Теперь подушки встречаются даже в самых дешевых автомобильчиках и умеют раскрываться с разной скоростью в зависимости от силы столкновения. Устройство пережило много модификаций и вот уже 25 лет спасает человеческие жизни. Однако опасность остается до сих пор. Если забыл или поленился пристегнуться, то подушка легко может… убить. Во время аварии, даже при небольшой скорости, тело по инерции летит вперед, раскрывшаяся подушка его остановит, зато голову с огромной скоростью отфутболит назад. У хирургов это называется “хлыстовая травма”. В большинстве случаев это грозит переломом шейных позвонков. В лучшем -вечной дружбой с вертеброневрологами. Это такие врачи, которым иногда удается поставить ваши позвонки на место. Но шейные позвонки, как известно, лучше не трогать,они проходят под категорией неприкасаемых. Именно поэтому во многих машинах раздается противный писк, который не столько напоминает нам, что нужно пристегиваться, сколько сообщает, что подушка НЕ раскроется, если человек не пристегнут. Внимательно прислушайтесь к тому, что вам поет ваша машина. Подушки безопасности разработаны специально, чтобы работать вместе ремнями безопасности и ни в коем случае не исключают необходимость их использования. По сведениям американской организации NHTSA использование подушек безопасности снижает риск смертельного исхода при аварии на 30-35% в зависимости от типа автомобиля. Во время столкновения ремни и подушки безопасности работают совместно. Комбинация их работы на 75% более эффективна в предотвращении серьезных травм головы и на 66% более эффективна в предотвращении травм грудной клетки. Боковые подушки безопасности тоже значительно улучшаю защиту водителя и пассажиров. Производители автомобилей используют также двухступенчатые подушки безопасности, которые раскрываются поэтапно одна за другой, чтобы избежать возможных травм, наносимых детям и невысоким взрослым от применения одноступенчатых, более дешевых подушек безопасности. В связи с этим, правильней сажать детей только на задние места в автомобилях любых типов.

Активные подголовники

Подголовники призваны предотвращать травмы от внезапного резкого движения головы и шеи при столкновении задней частью автомобиля. В действительности часто подголовники практически не защищают от травм. Эффективная защита при использовании подголовника может быть достигнута, если он находится точно на линии центра головы на уровне ее центра тяжести и не далее 7 см от задней ее части. Помните, что некоторые опции сидений изменяют размер и положение подголовника. Значительно повышают безопасность активные подголовники. Принцип их работы основан на простых физических законах, в соответствии с которыми голова откидывается назад несколько позднее корпуса. Активные подголовники используют давление корпуса на спинку сидения в момент удара, что вызывает смещение подголовника вверх и вперед, предотвращая вызывающее травму резкое откидывание головы назад. При ударе в заднюю часть автомобиля, новые подголовники срабатывают одновременно со спинкой сиденья, чтобы снизить риск травмы позвонков не только шейного, но и поясничного отделов. После удара, поясница сидящего в кресле непроизвольно движется вглубь спинки, при этом встроенные датчики дают «команду» подголовнику выдвинуться вперед-вверх, чтобы равномерно распределить нагрузку на позвоночник. Выдвигаясь при ударе, подголовник надежно фиксирует затылочную часть головы, предотвращая чрезмерный изгиб шейных позвонков. Стендовые испытания показали, что новая система эффективнее аналогичной уже существующей на 10-20%. При этом, однако, многое зависит от того, в каком положении находится человек в момент удара, его веса, а также того, пристегнут ли тот ремнем безопасности.

Силовой каркас безопасности

Структурная целостность (целостность каркаса автомобиля) это ещё один важный компонент пассивной безопасности автомобиля. Для каждого автомобиля он тестируется, перед тем как пойти в производство. Детали каркаса не должны изменять свою форму при столкновении, в то время как другие детали должны поглощать энергию удара. Сминаемые зоны спереди и сзади стали, пожалуй, тут самым серьезным достижением. Чем лучше будут сминаться капот и багажник, тем меньше достанется пассажирам. Главное, чтобы двигатель во время аварии уходил в пол. Инженеры разрабатывают все новые и новые комбинации материалов, чтобы погасить энергию удара. Результаты их деятельности можно очень наглядно увидеть на страшилках краш-тестов. Между капотом и багажником, как известно, находится салон. Так вот он и должен стать капсулой безопасности. И этот жесткий каркас ни в коем случае не должен смяться. Прочность жесткой капсулы дает возможность выжить даже в самом маленьком автомобиле. Если спереди и сзади каркас защищен капотом и багажником, то по бокам за нашу безопасность отвечают только металлические брусья в дверях. При самом страшном ударе, боковом, они не могут защитить, поэтому тут используют активные системы – боковые подушки безопасности и шторки, которые тоже блюдут наши интересы.

Также к элементам пассивной безопасности относятся: -передний бампер, поглощающий часть кинетической энергии при столкновении;

-травмобезопасные детали внутреннего интерьера пассажирского салона.

Активная безопасность автомобиля

В арсенале активной безопасности автомобиля существует много противоаварийных систем. Среди них есть старые системы и новомодные изобретения. Перечислим только некоторые из них: антиблокировочная система тормозов (ABS), traction control, electronic stability control (ESC), система ночного видения и автоматический круиз-контроль – эти модные технологии, которые помогают водителю на дороге сегодня.

Антиблокировочная система тормозов (ABS) помогает остановиться быстрее и не потерять управление автомобилем, особенно на скользких поверхностях. В случае экстренной остановки ABS работает по-другому нежели обычные тормоза. С обычными тормозами внезапная остановка часто приводит к блокировке колес, что вызывает занос. Антиблокировочная система тормозов определяет, когда колесо заблокировано и отпускает его, управляя тормозами в 10 раз быстрее, чем это может сделать водитель.При срабатывании ABS раздается характерный звук и ощущается вибрация на педали тормоза. Для эффективного использования ABS следует изменить технику торможения. Не нужно отпускать и снова нажимать педаль тормоза,поскольку это отключает систему ABS. В случае экстренного торможения следует один раз нажать на педаль и аккуратно удерживать её до остановки автомобиля.

Traction Control (TCS) применяется для предотвращения пробуксовывания ведущих колёс, независимо от степени нажатия педали газа и дорожного покрытия. Принцип действия её основан на снижении выходной мощности двигателя при возрастании частоты вращения ведущих колёс. О частоте вращения каждого колеса компьютер, управляющий этой системой, узнаёт от датчиков, установленных у каждого колеса и от датчика ускорения. Точно такие же датчики применяются в системах ABS и в системах контроля крутящего момента, поэтому часто эти системы применяются одновременно. По сигналам датчиков, указывающих на то, что ведущие колёса начинают пробуксовывать, компьютер принимает решение о снижении мощности двигателя и оказывает на него действие, аналогичное

уменьшению степени нажатия на педаль газа, причем степень сброса газа тем сильнее, чем выше темпы нарастания пробуксовки.

Работа системы ESC

ESC (electronic stability control) — она же ESP. Задача ESC — сохранить стабильность и управляемость автомобиля в предельных режимах поворота. Отслеживая боковые ускорения автомобиля, вектор поворота, тормозное усилие и индивидуальную скорость вращения колес, система определяет ситуации, угрожающие заносом или опрокидыванием автомобиля, и самостоятельно сбрасывает газ и притормаживает соответствующие колеса. Рисунок наглядно иллюстрирует ситуацию, когда водитель превысил максимальную скорость вхождения в поворот, и начался занос (или снос). Красная линия — это траектория движения машины без ESC. Если её водитель начнёт тормозить, у него есть серьёзный шанс развернуться, а если нет — то улететь с дороги. ESC же выборочно подтормозит нужные колёса так, чтобы автомобиль остался на нужной траектории. ESC– наиболее сложное устройство, которое сотрудничает с антиблокировочной (ABS) и антипробуксовочной (TCS) системами, контролирует тягу и управление дроссельной заслонкой. Система ESС на современном автомобиле почти всегда отключаемая. Это может помочь в нестандартных ситуациях на дороге, например при раскачивании застрявшего автомобиля.

Круиз-контроль — это система, автоматически поддерживающая заданную скорость движения вне зависимости от изменений профиля дороги (подъемы, спуски). Управление работой данной системы (фиксация скорости, ее снижение или увеличение) осуществляется водителем путем нажатия кнопок на подрулевом выключателе или руле после разгона автомобиля до необходимой скорости. При нажатии водителем педали тормоза или газа система моментально отключается.Круиз-контроль значительно уменьшает появление усталости у водителя в длительных поездках, поскольку позволяет ногам человека находиться в расслабленном состоянии. В большинстве случаев круиз-контроль снижает расход топлива, поскольку поддерживается стабильный режим работы двигателя; увеличивается моторесурс двигателя, так как при поддерживаемых системой постоянных оборотах отсутствуют переменные нагрузки на его детали.

Активный круиз-контроль

Активный круиз-контроль, кроме поддержания постоянной скорости движения, одновременно отслеживает соблюдение безопасной дистанции до впереди идущего автомобиля. Основной элемент активного круиз-контроля – ультразвуковой датчик, установленный в переднем бампере или за радиаторной решеткой. Его принцип работы аналогичен датчикам парковочного радара, только радиус действия составляет несколько сотен метров, а угол охвата, наоборот, ограничен несколькими градусами. Посылая ультразвуковой сигнал, датчик ждет ответа. Если луч нашел препятствие в виде автомобиля, движущегося с меньшей скоростью и вернулся – значит, необходимо снизить скорость. Как только дорога вновь освобождается, машина разгоняется до первоначальной скорости.

Еще одним из важных элементов безопасности современного автомобиля являются шины. Подумайте: они единственное, что связывает машину с дорогой. Хороший комплект шин дает большое преимущество в том, как машина реагирует на экстренные маневры. Качество шин также заметно сказывается на управляемости машин.

Рассмотрим для примера оснащение Mercedes S-класса. В базовой комплектации автомобиля есть система Pre-Safe. При угрозе ДТП, которую электроника определяет по резкому торможению или слишком сильному скольжению колес, Pre-Safe подтягивает ремни безопасности и надувает воздушные камеры в мультиконтурных передних и задних сиденьях, чтобы лучше зафиксировать пассажиров. Помимо этого Pre-Safe «задраивает люки» – закрывает стекла и люк в крыше. Все эти приготовления должны уменьшить тяжесть возможного ДТП. Отличника контраварийной подготовки из S-класса делают всевозможные электронные помощники водителя – система стабилизации ESP, антипробуксовочная система ASR, система помощи при экстренном торможении Brake Assist. Система помощи при экстренном торможении в S-классе совмещена с радаром. Радар определяет

расстояние до едущих впереди машин.

Если оно становится угрожающе коротким, а водитель тормозит слабее необходимого, электроника начинает ему помогать. При экстренном торможении стоп-сигналы автомобиля мигают. По заказу S-класс можно оборудовать системой Distronic Plus. Она представляет собой автоматический круиз-контроль, очень удобный в пробках. Устройство с помощью того же радара контролирует дистанцию до впереди идущего автомобиля, при необходимости останавливает машину, а когда поток возобновляет движение, автоматически разгоняет ее до прежней скорости. Тем самым Mercedes избавляет водителя от каких-либо манипуляций помимо вращения руля. Distronic работает на скоростях от 0 до 200 км/ч. Парад антиаварийных приспособлений S-класса завершает инфракрасная система ночного видения. Она выхватывает из темноты предметы, спрятавшиеся от мощных ксеноновых фар.

Рейтинг безопасности автомобилей (краш-тесты EuroNCAP)

Главным светочем пассивной безопасности является «Европейская ассоциация испытания новых автомобилей», или сокращенно «EuroNCAP». Основанная в 1995 году, эта организация занимается тем, что регулярно уничтожает новенькие автомобили, выставляя оценки по пятизвездной шкале. Чем больше звездочек, тем лучше. Итак, если, выбирая новый автомобиль, вы в первую очередь заботитесь о безопасности, отдайте предпочтение модели, получившей максимально возможные пять звезд от «EuroNCAP».

Фронтальный краш-тест Боковой краш-тест

Все серии испытаний проходят по одному сценарию. Сначала организаторы отбирают популярные на рынке автомобили одного класса и одного модельного года и анонимно закупают по две машины каждой модели. Испытания проводятся на двух известных независимых исследовательских центрах – английском TRL и голландском TNO. Начиная с первых тестов 1996 года и до середины 2000 года рейтинг безопасности EuroNCAP был «четырехзвездочным» и включал в себя оценку поведения автомобиля в двух видах испытаний – при фронтальном и боковом краш-тестах.

Но летом 2000 года эксперты EuroNCAP ввели еще одно, дополнительное, испытание – имитацию бокового удара о столб. Автомобиль размещают поперечно на подвижной тележке и на скорости 29 км/ч направляют водительской дверью в металлический столб диаметром примерно 25 см. Этот тест проходят только те автомобили, которые оснащены специальными средствами защиты головы водителя и пассажиров – «высокими» боковыми подушками или надувными «занавесками».

Боковой удар в столб

Если машина прошла три теста, то вокруг головы манекена на пиктограмме степени безопасности при боковом столкновении появляется ореол в виде звезды. Если ореол зеленый, это означает, что автомобиль успешно прошел третий тест и получил дополнительные баллы, способные переместить его в пятизвездочную категорию. А те машины, у которых в стандартном оснащении нет «высоких» боковых подушек или надувных «занавесок», проходят испытания по обычной программе и не могут претендовать на высшую оценку Euro-NCAP. Оказалось, что эффективно сработавшие защитные приспособления могут более чем на порядок снизить риск травм головы водителя при боковом ударе о столб. Например, без «высоких» подушек или «занавесок» коэффициент вероятности повреждения головы НIС (Head Injury Criteria) при «столбовом» тесте может достигать 10000! (Пороговой величиной НIС, за которой начинается область смертельно опасных повреждений головы, медики считают 1000.) Зато с применением «высоких» подушек и «занавесок» НIС падает до безопасных величин – 200-300.

Тест наезда на пешехода

Пешеход – самый беззащитный участник дорожного движения. Однако его безопасностью EuroNCAP озаботилось лишь в 2002 году, разработав соответствующую методику оценки автомобилей (зеленые звезды). Изучив статистику, специалисты пришли к выводу, что большинство наездов на пешехода происходит по одному сценарию. Вначале автомобиль бампером бьет по ногам, а затем человек, в зависимости от скорости движения и конструкции автомобиля, ударяется головой либо о капот, либо о ветровое стекло.

Перед проведением теста бампер и переднюю кромку капота расчерчивают на 12 участков, а капот и нижнюю часть лобового стекла делят на 48 частей. Затем последовательно по каждому участку наносят удары имитаторами ног и головы. Сила удара соответствует столкновению с человеком на скорости 40 км/ч. Внутри имитаторов размещены датчики. Обработав их данные, компьютер присваивает каждому размеченному участку определенный цвет. Зеленым обозначаются наиболее безопасные участки, красным – самые опасные, желтым – занимающие промежуточное положение. Затем, по совокупности оценок, выставляется общая «звездная» оценка автомобилю за безопасность пешеходов. Максимально возможный результат – четыре звезды.

За последние годы прослеживается четкая тенденция – все больше новых автомобилей получают «звезды» в пешеходном тесте. Проблемными остаются только крупные вседорожники. Причина – в высокой передней части, из-за чего в случае наезда удар приходится не по ногам, а по туловищу.

И еще одно новшество. Все больше автомобилей оснащаются системами напоминания о непристегнутом ремне безопасности (СНРБ) – за наличие такой системы на водительском месте эксперты EuroNCAP начисляют один дополнительный балл, за оснащение обоих передних мест – два балла.

Американская национальная ассоциация безопасности дорожного движения NHTSA проводит краш–тесты по собственной методике. При фронтальном ударе автомобиль на скорости 50 км/ч врезается в жесткий бетонный барьер. Более суровы и условия бокового удара. Тележка весит почти 1400 кг, а автомобиль движется со скоростью 61 км/ч. Такой тест проводится дважды – производятся удары в переднюю, а затем в заднюю двери. В США профессионально и официально бьет машины еще одна организация – Институт транспортных исследований для страховых компаний IIHS. Но ее методика несущественно отличается от европейской.

Заводские краш-тесты

Даже не специалисту понятно, что описанные выше тесты не охватывают всех возможных видов аварий и, следовательно, не позволяют достаточно полно оценить безопасность автомобиля. Поэтому все крупные автопроизводители проводят собственные, нестандартные, краш–тесты, не жалея при этом ни времени, ни денег. Например, каждая новая модель Мерседес до начала производства проходит 28 испытаний. В среднем на одно испытание уходит около 300 человеко-часов. Некоторая часть тестов проводится виртуально, на компьютере. Но они играют роль вспомогательных, для окончательной доводки автомобилей их разбивают только в «реале».Самые тяжелые последствия наступают в результате лобовых столкновений. Поэтому основная часть заводских испытаний имитирует именно этот вид аварий. При этом автомобиль врезают в деформируемые и жесткие препятствия под разными углами, с разными скоростями и разными величинами перекрытия. Однако и такие тесты не дают всей полноты картины. Производители стали сталкивать автомобили между собой, причем не только «одноклассников», но и машины разных «весовых категорий» и даже легковые с грузовиками. Благодаря результатам таких тестов на всех «фурах» с 2003 года стали обязательными противоподкатные балки.

С выдумкой заводские специалисты по безопасности подходят и к испытания боковыми ударами. Разные углы, скорости, места ударов, равновеликие и разновеликие участники – все, как с фронтальными тестами.

Кабриолеты и крупные вседорожники испытывают еще и на переворот, ведь по статистике число погибших в таких авариях достигает 40%

Часто производители испытывают свои автомобили ударом сзади на небольших скоростях (15-45 км/ч) и перекрытии до 40%. Это позволяет оценить, насколько защищены пассажиры от хлыстовых травм (повреждения шейных позвонков) и насколько защищен бензобак. Фронтальные и боковые удары при скоростях до 15 км/ч помогают определить степень ущерба (т.е. затраты на ремонт) при мелких авариях. Отдельным испытания подвергаются сиденья и ремни безопасности.

А что предпринимают автопроизводители для защиты пешеходов? Бампер изготавливают из более мягкого пластика, а в конструкции капота применяют как можно меньше усилительных элементов. Но главная опасность для жизни человека – подкапотные агрегаты. При наезде голова проминает капот и натыкается именно на них. Здесь идут двумя путями – стараются максимально увеличить свободное пространство под капотом, либо снабжают капот пиропатронами. Датчик, расположенный в бампере, при ударе подает сигнал на механизм, вызывающий срабатывание пиропатрона. Последний, выстреливая, приподнимает капот на 5-6 сантиметров, защищая тем самым голову от удара о жесткие выступы подкапотного пространства.

Куклы для взрослых

Все знают, что для проведения краш – тестов используются манекены. Но далеко не всем известно, что к такому, казалось бы простому и логичному решению пришли не сразу. В начале для испытаний использовались человеческие трупы, животные, а в менее опасных тестах участвовали живые люди – добровольцы.

Пионерами в борьбе за безопасность человека в автомобиле выступили американцы. Именно в США еще в 1949 году был изготовлен первый манекен. По своей «кинематике» он больше походил на большую куклу: его конечности двигались совсем не так, как у человека, а тело было цельным. Только в 1971 году GM создали более-менее «человекоподобный» манекен. А современные «куклы» отличаются от своего предка, примерно как человек от обезьяны.

Сейчас манекены изготавливаются целыми семействами: два варианта «отца» разного роста и веса, более легкая и миниатюрная «супруга» и целый набор «детей» – от полуторагодовалого до десятилетнего возраста. Вес и пропорции тела полностью имитируют человеческое. Металлические «хрящи» и «позвонки» работают как человеческий позвоночник. Гибкие пластины заменяют ребра, а шарниры – суставы, даже ступни ног подвижны. Сверху этот «скелет» обтянут виниловым покрытием, упругость которого соответствует упругости человеческой кожи.

Внутри манекен с ног до головы напичкан датчиками, которые во время испытаний передают данные в блок памяти, расположенный в «грудной клетке». В итоге стоимость манекена составляет – держитесь за стул – свыше 200 тысяч долларов. То есть, в несколько раз дороже подавляющего большинства испытуемых автомобилей! Зато такие «куклы» универсальны. В отличие от предшественников, они годятся для проведения и фронтальных, и боковых тестов, и наезда сзади. Подготовка манекена к проведению испытания требует точной настройки электроники и может занимать несколько недель. Кроме того, непосредственно перед тестом, на различные участки «тела» наносят метки краской, чтобы определить, с какими частями салона происходит контакт во время аварии.

Мы живем в компьютерном мире, а потому специалисты по безопасности активно используют в своей работе виртуальное моделирование. Это позволяет собрать гораздо больше данных и, кроме того, такие манекены практически вечны. Программисты Toyota, например, разработали более десятка моделей, имитирующих людей всех возрастов и антропометрических данных. А на Volvo даже создали цифровую беременную женщину.

Заключение

Каждый год во всем мире в ДТП погибают около 1,2 миллиона человек, а полмиллиона получают травмы и увечья. Стремясь привлечь внимание к этим трагическим цифрам, ООН в 2005 году объявило каждое третье воскресенье ноября Всемирным днем памяти жертв дорожных аварий. Проведение краш – тестов позволяет повысить безопасность автомобилей и снизить тем самым вышеприведенную печальную статистику.

Глава 12. Безопасность автомобиля

Говоря о безопасности дорожного движения, мы отмечали, что она зависит от безопасности каждого элемента системы ВАДС. По статистике вследствие неисправности автомобиля происходит 3 — 5 % всех ДТП. На первый взгляд это немного, в то же время это звено (автомобиль) второстепенным не назовешь, так как:

во-первых, 3 — 5 % — это не так уж и мало, если учесть, что в России ежегодно регистрируется порядка 150 тыс. ДТП, то общее количество ДТП по техническим причинам составляет 7 — 8 тыс.;

во-вторых, ДТП, происходящие вследствие технической неисправности автомобиля, приводят чаще всего к очень тяжелым последствиям (несложно представить, к чему приведет отказ тормозов, рулевого управления, элементов ходовой части, учитывая, что, как правило, такие отказы происходят на скоростях, близких к максимальным);

в-третьих, значительная часть ДТП, которые статистика относит к ошибкам водителей, фактически происходят вследствие технической неисправности автомобиля (повышенный шум, вибрация, загазованность кабины и целый ряд других).

Дорожно-транспортные происшествия возникают вследствие отказов следующих узлов автомобиля (общее количество ДТП, вследствие технических неисправностей ТС принято за 100 %):

тормозной системы — 41,3 %

рулевого управления — 16,4 %

ходовой части и шин — 19,2 %

приборов освещения и сигнализации — 7,9 %

других устройств — 15,2 %

итого — 100 %

Рис. 26. Структура безопасности автомобиля

Понятие «безопасность автомобиля» включает в себя комплекс его конструктивных и эксплуатационных свойств, обеспечивающих БД то есть предупреждение ДТП, снижение тяжести их последствий, а также снижение вредного влияния автомобиля на окружающую среду.

Различают активную, пассивную, послеаварийную и экологическую безопасности (рис. 26).

Под активной безопасностью автомобиля понимают его конструктивные свойства, обеспечивающие надежность движения во все эксплуатационных условиях, то есть направленные на предотвращение ДТП.

Под пассивной безопасностью — его конструктивные свойства, предотвращающие или снижающие степень травмирования участников движения и обеспечивающие восстанавливаемость автомобиля после ДТП.

Под послеаварийной безопасностью — его конструктивные свойства, направленные на предотвращение усугубляющих последствии ДТП.

Необходимо отметить, что все виды безопасности автомобиля взаимосвязаны. В критических ситуациях первоначально в работу должны вступить качества активной безопасности автомобиля и предотвратить ДТП, если они по какой-то причине не срабатывают, то включаются качества пассивной безопасности и снижают степень травмирования участников ДТП, затем вступают в работу качества послеаварийной безопасности, при помощи которых обеспечивается эвакуация людей, предотвращаются возгорания, взрывы автомобиля.

В отличие от первых трех качеств безопасности, которые включаются в работу в экстренных случаях, экологическая безопасность проявляется на протяжении всего срока службы автомобиля.

12.1. Активная безопасность автомобиля

К качествам активной безопасности автомобиля относятся его эксплуатационное свойства (тормозные, тягово-скоростные, устойчивость, управляемость, информативность, надежность цементов конструкции и др.) и параметры рабочего места водителя (микроклимат кабины, шум, вибрация, эргономические качества). Остановимся подробнее на некоторых из них.

Тормозные свойства. Средняя скорость автомобиля, отражающая совокупность его динамических свойств, в большой степени зависит от возможности быстро остановить автомобиль. Надежные и эффективные тормоза позволяют водителю уверенно вести автомобиль с большой скоростью и вместе с тем обеспечивают необходимую БД. Эффективность торможения зависит от конструкции и состояния тормозных устройств, конструкции и состояния шин, типа и состояния дорожного покрытия, величины уклона дороги и других параметров.

Согласно международным нормативным документам автомобиль оснащается тормозными устройствами, выполняющими следующие функции:

рабочая тормозная система обеспечивает замедление движения транспортного средства и его остановку надежно, быстро, эффективно независимо от дорожных условий и степени загрузки;

стояночная тормозная система предназначена для удержания ТС разрешенной максимальной массы в неподвижном состоянии на опорной поверхности с уклоном не менее 16 %;

запасная тормозная система предназначена для снижения скорости ТС при выходе из строя рабочей тормозной системы;

на некоторых типах автомобилей применяется вспомогательная тормозная система, предназначенная для уменьшения энергонагруженности тормозных механизмов рабочей тормозной системы.

В зависимости от сложившихся дорожных условий различают служебное и экстренное торможение.

К служебному относят торможение для снижения скорости или остановки автомобиля в заранее выбранном водителем месте. Как правило, снижение скорости в этом случае осуществляется плавно.

Экстренное торможение используют с целью максимально быстрого уменьшения скорости ТС, например, для предотвращения наезда. С точки зрения безопасности движения нас больше интересует экстренное торможение. Это торможение характеризуется остановочным путем и путем торможения.

Путь торможения — это расстояние, которое проходит автомобиль с начала торможения до остановки.

При торможении кинетическая энергия вращающихся и поступательно движущихся масс транспортного средства преобразовывается в работу торможения, переходящую в тепловую энергию

,

где Е – кинетическая энергия ТС. Аm – работа торможения.

Заменив Е и Аm их эквивалентами, получим:

, (22)

где Gа — сила тяжести автомобиля, кг; Va — скорость автомобиля, м/с; Рш — тормозная сила, кг; Sm — путь торможения, м.

Максимально возможная тормозная сила ограничивается сцеплением шин с дорогой, т. е.

,

где φ — коэффициент сцепления шин с дорогой, значение коэффициента φ для различных условий представлены в табл. 15.

Подставив значение формулу (22) получим:

.

Отсюда для горизонтального участка дороги

.

Таблица 15

Покрытие дороги

φ для поверхности

сухой

мокрой

Асфальтобетонное

0,6-0,7

0,4-0,5

Булыжное, щебеночное

0,5-0,6

0,3-0,4

Грунтовая дорога

0,4-0,6

0,2-0,4

Дорога, покрытая снегом, укатанная

0,2-0,3

-

Дорога в гололед

0,05-0,2

-

Однако из практики известно, что чем больше масса транспортного средства, тем больше величина пути торможения. Поэтому для практических расчетов вводят коэффициент эффективности торможения Кэ, величина которого зависит от конструкции тормозов и массы ТС. Значения коэффициента Кэ представлены в табл. 16.

Таблица 16

Автомобили

Без нагрузки

С нагрузкой

Легковые

1 - 1,12

1,1 - 1,15

Грузовые разрешенной максимальной массы до 1,0 т и автобусы длиной до 7 м

1,1 - 1,3

1,2 - 1,5

Грузовые разрешенной максимальной массы более 1 0 т и автобусы длиной более 7 м

1,2 - 1,4

1,4 - 1,6

Уточненная формула расчета пути торможения

.

При торможении на уклоне

,

где i — уклон дороги.

Эффективность снижения скорости зависит от приемов торможения. В практике вождения автомобиля важное значение имеет освоение способов торможения, исключающих блокировку (юз) колеса. Обычно используют четыре способа торможения: плавный, резкий, прерывистый, ступенчатый.

Плавный способ торможения. При торможении этим способом водитель плавно и постепенно увеличивает усилие на педали тормоза. При его применении созда­ются средние нагрузки на детали автомобиля, как правило, не возникают сложные ситуации в дорожном движении, однако, применить этот способ можно лишь при наличии у водителя достаточного времени для его осуществления.

Рис. 27. Способы торможения: а — плавное торможение; б — резкое; в — прерывистое; г — ступенчатое;

Р — усилие на педали тормоза; j — замедление автомобиля; Sm - путь торможения

Резкий способ торможения. При его применении водитель быстро прикладывает к педали максимально возможное усилие, доведя колеса до блокировки. Однако эффективность такого торможения низка вследствие уменьшения коэффициента сцепления шин с дорогой при скольжении колеса юзом (рис. 27). Кроме того, при блокировке колес теряется управляемость автомобиля и возрастает вероятность ДТП.

Более эффективен прерывистый способ торможения. Сущность его состоит в том, что после резкого и сильного нажатия на педаль и, следовательно, перехода колес в режим юза, водитель резко отпускает педаль тормоза, прекращая торможение, затем действие повторяется несколько раз.

Наибольшей эффективностью обладает ступенчатый способ торможения, он наиболее сложен по технике исполнения и для его применения требуется специальная тренировка. Отличие ступенчатого торможения от прерывистого состоит в том, что педаль тормоза после резкого нажатия на нее, не полностью отпускается, а лишь настолько, чтобы устранить юз, после чего усилие на педаль снова увеличивается и т. д.

Если условно эффективность торможения (величину пути торможения) при применении плавного и резкого способов торможения принять за 1, то при прерывистом способе торможения она составит 0,8 — 0,9, а при ступенчатом 0,7 —0,8.

Для практической оценки возможности остановки автомобиля, например с целью предотвращения ДТП, кроме пути торможения используют понятие остановочный путь — расстояние, которое проходит автомобиль с момента обнаружения водителем препятствия до остановки транспортного средства.

Рис. 28. Схема для определения остановочного пути

Остановочный путь (рис. 28), кроме пути торможения, включает расстояние, пройденное транспортным средством за время реакции водителя tр, время срабатывания тормозного привода tcр и нарастания давления в тормозной системе tн. Величина остановочного пути определяется по формуле:

. (23)

Время реакции водителя tр отсчитывается от обнаружения препятствия до начала нажатия на тормозную педаль, зависит от его физиологических качеств, меняется в широких пределах от 0,3 до 1,5 с и в расчетах обычно принимается 0,7 — 0,8 с.

Бремя срабатывания тормозов tcр отсчитывается с начала нажатия на тормозную педаль до возникновения тормозного момента на колесах, зависит от технического состояния тормозной системы, типа привода и колеблется от 0,05 до 0,15 с для гидравлического привода и от 0,2 до 0,4 для пневматического.

Время нарастания давления в тормозной системе tcр отсчитывается от начала его увеличения до достижения максимального значения, зависит от типа транспортного средства, типа и состояния тормозной системы, усилия на тормозную педаль и в расчетах принимается 0,1 - 0,3 с.

Тягово-скоростные качества. Тягово-скоростными называют совокупность свойств, обеспечивающих необходимые диапазоны изменения скоростей движения и интенсивности разгона транспортного средства в различных дорожных условиях, которые определяют:

предельную величину продольных уклонов дороги, преодолеваемых автомобилем на каждой из передач;

возможную величину ускорения автомобиля на каждой из передач при разных дорожных сопротивлениях;

максимальную скорость автомобиля в различных условиях.

Эти качества особенно важны в дорожно-транспортных ситуациях, требующих резкого увеличения скорости автомобиля (обгон, объезд препятствия, проезд перекрестков), т. е. в таких ситуациях, в которых необходимо быстро сократить время нахождения автомобиля в сложной или опасной обстановке.

Стремление максимально использовать скоростные качества автомобиля естественны. Производительность автотранспорта находится в прямой зависимости от скорости.

Однако скорость движения оказывает влияние практически на все отрицательные аспекты безопасного управления автомобилем. Увеличение скорости влечет за собой рост в степенной зависимости величины пути торможения и центробежной силы, снижение коэффициента сцепления φ и увеличение коэффициента сопротивления качению колес f, создавая тем самым предпосылки к пробуксовке, продольному и боковому скольжению колес автомобиля, ухудшению устойчивости и управляемости автомобиля, ограниче­нию всех видов информативности. Тяжесть последствий ДТП находится в прогрессивной зависимости от скорости движения. Значительная часть ДТП с тяжелыми последствиями (более 40 %) связана с превышением скорости движения автотранспортных средств.

Следовательно, чрезмерная уверенность водителя в динамических качествах автомобиля может привести к очень серьезным последствиям и уже сейчас на автомобилях устанавливается аппаратура, информирующая водителя о превышении скорости в той или иной ситуации.

Устойчивость автомобиля характеризует его способность противостоять произвольным изменениям направления движения, опрокидыванию или скольжению на дороге. Различают поперечную и продольную устойчивость автомобиля.

Продольная устойчивость транспортного средства заключается в сохранении ориентации вертикальной оси в продольной плоскости в заданных пределах, т. е. перемещении на продольном уклоне без опрокидывания или скольжения. Вероятность опрокидывания современных автомобилей в продольной плоскости невелика ввиду низкого расположения центра тяжести.

Поперечная устойчивость характеризует свойство транспортного средства сохранять ориентацию вертикальной оси в поперечной плоскости в заданных пределах.

Потеря поперечной устойчивости вызывает боковое скольжение с возможным переходом его в опрокидыва­ние, что может быть вызвано следующими причинами:

действие центробежной силы;

действие боковых сил (ветра, поперечной составляющей массы и др.);

- моментом, создаваемым различными по величине тяговой или тормозной силами на колесах левого и правого борта;

буксированием или скольжением колес одного борта;

резким разгоном, торможением или поворотом управляемых колес;

неодинаковой регулировкой колесных тормозов;

неисправностью в рулевом управлении (большой люфт, заклинивание);

разрывом шин и др.

При повороте автомобиля на кривой радиусом Rп (рис. 29) в центре масс Оц возникает центробежная сила Рц, стремящаяся сместить автомобиль в боковом направлении

.

Рц раскладывается на две составляющие: продольную Рх и поперечную Ру. Для безопасного движения основное значение имеет сила Ру, вызывающая скольжение и опрокидывание автомобиля.

Величину Р можно рассчитать по формуле

.

где γ — угол между радиусом траектории центра масс автомобиля и продолжением оси задних колес (см. рис. 29).

При поворотах угол γ имеет небольшое значение и поэтому в расчетах на устойчивость автомобиля используют не составляющую силы Ру от Рц, а полное значение сил Рц.

Противодействует смещению автомобиля сила сцепления колес с дорогой Рсц

.

где Gk — сила тяжести, приходящаяся на колесо, кг; φу — коэффициент сцепления шин с дорогой в поперечном направлении.

Рис. 29. Схема сил, действующих при криволинейном движении

Условие неустойчивого равновесия:

.

Отсюда легко рассчитать скорость (критическую), с которой можно вести автомобиль без опасности заноса по горизонтальному участку, м/с:

. (24)

Согласно формуле (24) движение автомобиля будет устойчивее на дорогах с пологими поворотами, хорошим качеством и состоянием покрытия, а также при ограниченных скоростях движения.

Условие устойчивости автомобиля в случае возможного опрокидывания получаем, составляя уравнение моментов относительно центра опрокидывания — точки О (рис. 30), в котором опрокидывающему действию поперечной силы Рц на плече hц (, возникающей при движении автомобиля на повороте, характеризующемся радиусом Rп, противодействует сила Gа на плече В/2.

или ,

где — высота центра масс, м; В — колея, м.

Рис. Действие в поперечной плоскости моментов от сил Рц и Ga на повороте радиусом Рп

Плечо действия силы Gа будет несколько меньше В/2 вследствие деформации упругих элементов подвески под действием центробежной силы и крена подрессоренных масс. Это учитывается введением коэффициента . После преобразования максимально возможная скорость (критическая), с которой можно вести автомобиль без опасности опрокидывания по горизонтальному участку, м/с:

,

где — коэффициент, учитывающий деформацию упругих элементов подвески (рессор, шин)= 0,85 — 0,95.

Согласно формуле (25) устойчивость автомобиля в случае возможного опрокидывания выше на дорогах с пологими поворотами у автомобилей с широкой колеей и низкой высотой центра масс. Опрокидывание автомобиля может также произойти в результате непогашенного заноса, в случаях наезда на препятствие или съезда его с полотна дороги.

Возможность заноса или опрокидывания автомобиля зависит от величины и направления поперечного уклона дороги. Если уклон совладает с направлением Центробежной силы, условия заноса и опрокидывания усугубляются и наоборот. Движение автомобиля по криволинейной траектории может возникнуть не по воле водителя, а как следствие нарушения курсовой устойчивости с последующими нежелательными последствиями. Возможность заноса или опрокидывания автомобиля требует от водителя умения выбора безопасной скорости и траектории движения на криволинейных участках дороги, а также при маневрировании.

Управляемость автомобиля характеризует его способность двигаться по направлению, заданному водителем. При плохой управляемости автомобиль «рыскает» и от водителя требуются дополнительные воздействия на органы управления для корректировки его траектории. Плохая управляемость или полная ее потеря может быть в результате бокового скольжения управляемых колес, что часто встречается при торможении на скользких дорогах.

Управляемость автомобиля оценивается мерой соответствия параметров движения количественным характеристикам управляющих воздействий на рулевое колесо. Эта мера в различных условиях движения меняется в широких пределах, что затрудняет выбор оценочных параметров управляемости.

Необходимые качества управляемости могут быть достигнуты при условии выполнения следующих требований:

обеспечением необходимого соотношения углов поворота управляемых колес;

обеспечением стабилизации управляемых колес;

исключением возможности произвольных колебаний управляемых колес;

наличием в рулевом управлении обратной связи, обеспечивающей водителя информацией о величине и направлении сил, действующих на управляемые колеса.

Информативность автомобиля — это его свойство обеспечивать необходимой информацией водителя и других участников движения в любых условиях. Информативность ТС имеет решающее значение для безопасного управления. Информация об особенностях транспортного средства, характере поведения и намерениях его водителя во многом предопределяет безопасность в действиях участников движения и уверенность в реализации их намерений. В условиях недостаточной видимости, особенно ночью, информативность в сравнении с другими эксплуатационными свойствами автомобиля оказывает главное влияние на безопасность движения.

Различают внутреннюю, внешнюю и дополнительную информативность автомобиля.

Свойства автомобиля, обеспечивающие возможность воспринимать водителем информацию, необходимую для безопасного управления автомобилем в любой момент времени, называются внутренней информативностью. Она зависит от конструкции и обустройства кабины водителя. Важнейшими для внутренней информативности являются обзорность, конструкция и содержание элементов на щитке приборов, система внутренней звуковой и световой сигнализации.

Обзорность должна позволять водителю своевременно и без помех физически воспринимать всю необходимую информацию о любых изменениях дорожной обстановки. Она зависит, прежде всего, от размера окон и стеклоочистителей; ширины и расположения стоек кабины; конструкции смывателей, системы обдува и обогрева стекол; расположения, размеров и конструкции зеркал заднего вида.

Панель приборов должна располагаться в кабине таким образом, чтобы водитель для наблюдения за ними и восприятия их показаний расходовал минимальное время, не отвлекаясь от наблюдения за дорогой. Расположение и конструкция рукояток, кнопок и клавишей управления должны позволять легко их находить, особенно ночью, и обеспечивать водителя посредством тактильных и кинетостатических ощущений обратной связью, необходимой для контроля точности управляющих действий. Наибольшая точность сигналов обратной связи требуется от рулевого колеса, педалей тормоза и управления дроссельной заслонкой, а также рычага переключения передач.

Внешняя информативность — свойство, от которого зависит возможность других участников движения получить информацию от автомобиля, необходимую для правильного взаимодействия с ним в любое время. Она определяется размерами, формой и окраской кузова, характеристиками и расположением световозвращателей, системы внешней световой сигнализации, а также звуковым сигналом.

Система внешней световой сигнализации включает указатели поворотов, сигналы торможения, габаритные огни, освещение номерного знака, сигналы преимущественного проезда. С учетом особенностей восприятия и анализа водителем информации система внешней световой сигнализации должна отвечать требованиям надежности работы и однозначного толкования сигналов участниками движения в любых условиях видимости.

Дополнительная информативность — свойство автомобиля, позволяющее эксплуатировать его в условиях ограниченной видимости (ночью, в тумане и т. п.). Она зависит от характеристик приборов системы автономного освещения и других устройств автомобиля, позволяющих улучшить восприятие водителем информации в различных дорожно-транспортных ситуациях.

Система автономного освещения на любом автомобиле снабжена фарами ближнего и дальнего света. На некоторых автомобилях (автобусах, автопоездах), занятых на междугородных перевозках, устанавливают фары скоростного света, предназначенные для свобод­ного режима движения по прямым участкам дорог со скоростью, превышающей 70 — 90 км/ч. Все более широкое применение для различных автомобилей получают противотуманные фары для движения во время плохой видимости и фары с широкоугольным светом для движения по криволинейным участкам с малыми радиусами поворота, по неосвещенным улицам городов, лесным и другим дорогам.

Весовые и габаритные параметры важны для предупреждения стесненности дорожного движения и обеспечения сохранности дорог. Поэтому предусматриваются ограничения на параметры транспортных средств, а при отклонении от этих ограничений вводятся специальные правила перевозок крупногабаритных и тяжеловесных грузов.

Груз считается крупногабаритным, если автотранспортное средство с грузом или без груза превышает хотя бы одно из значений:

- по ширине 2,55 м (2,6 м для рефрижераторов и изотермических кузовов);

- по высоте 4,0 м от поверхности дороги;

- по длине для одиночных автомобилей, автобусов и троллейбусов — 12,0 м, для автопоездов в составе «автомобиль — прицеп» и «автомобиль — полуприцеп» — 20,0 м, для двухзвенных сочлененных автобусов и троллейбусов— 18,0 м.

К крупногабаритным относятся также транспортные средства, имеющие в своем составе два и более прицепа независимо от ширины и общей длины автопоезда.

Транспортные средства в зависимости от осевых масс подразделяются на 2 группы:

к группе А относятся ТС с осевыми массами наиболее нагруженной оси свыше 6 т до 10 т включительно, предназначенные для эксплуатации на дорогах с усовершенствованным покрытием;

к группе Б относятся ТС с основными массами наиболее нагруженной оси до 6 т включительно, предназначенные для эксплуатации на всех дорогах.

Груз считается тяжеловесным, если полная масса транспортного средства с грузом или без груза и (или) осевая масса превышают хотя бы один из параметров, указанных в табл. 17 и 18.

Таблица 17

Допустимые значения полной массы ТС

Виды ТС

Полная масса, т

Расстояние между

крайними осями ТС группы А, не менее, м

Группа А

Группа Б

Одиночные автомобили и автобусы:

двухосные

18

12

3,0

трехосные

25

16,5

4,5

четырехосные

30

22

7,5

Автопоезда:

трехосные

28

18

10,0

четырехосные

36

24

11,2

пятиосные и более

38

25,5

12,2

Параметры рабочего места водителя. Активная безопасность автомобиля определяется и теми конструктивными качествами, которые определяют условия работы водителя (микроклимат кабины, уровень шума и вибрации, эргономические свойства и др.).

Микроклимат кабины — это совокупность температуры, влажности, скорости воздуха, наличие в нем вредных примесей.

Шум и вибрация — природа их одна и та же — это механические колебания, возникающие под влиянием внешних воздействий.

Таблица 18

Допустимые значения осевой массы на каждую ось

Расстояние между осями ТС, м

Осевая масса на каждую ось, т

Группа А

Группа Б

Свыше 2

10,0

6,0

Свыше 1 ,65 до 2 включительно

9,0

5,7

Свыше 1,35 до 1,65 включительно

8,0

5,7

Свыше! до 1,35 включительно

7,0

5,0

До 1,0

6,0

4,5

Эти параметры непосредственно влияют на психофизиологические характеристики водителя. Отклонение их от нормы приведет к быстрому физическому утомлению, снижению умственной деятельности, замедлению реакции и как результат снижению произ­водительности труда и уровня безопасности. Например, оптимальный температурный режим в кабине водителя принят 17 — 24° С, отклонение от него в ту или иную сторону вызывает резкое увеличение вероятности совершения ДТП (рис. 31).

В. И. Коноплянко [12] допустимые параметры рабочего места водителя представил в виде зон условий обитания (рис. 32).

Эргономические свойства характеризуют соответствие размеров и формы сиденья и органов управления транспортного средства антропометрическим параметрам человека. На рис. 33 представлено правильное положение водителя, которое достигается опреде­ленными соотношениями размеров подушки и спинки сиденья, возможностью их регулирования. Немаловажное значение с точки зрения БД имеет положение рук на рулевом колесе. Правильное положение (по аналогии с циферблатом часов) (см. рис. 33, а); левая рука — между 9 и 10 часами, правая — между 2 и 3 часами.

Рис. 31. Влияние температуры воздуха в кабине (Т) на вероятность совершения ДТП (РДТП)

Органы управления. Современные автомобили требуют от водителя при управлении сравнительно малых мускульных усилий и в этом отношении они достаточно совершенны. Мускульную работу измеряют по количеству выделяемого во время работы тепла и различают легкую (1—3 ккал/мин), умеренную (3 — 5), среднюю (5 — 8), тяжелую (8— 10), очень тяжелую (10— 15). В зависимости от марки автомобиля мускульные усилия водителя составляют 1 — 5 ккал/мин, соответственно его мускульная работа относится к легкой или умеренной.

Рис. 32. Зоны условий обитания

Требования, предъявляемые к органам управления:

минимальное время, затрачиваемое на перемещение и срабатывание систем, приводящих их в действие;

оптимальные величины прикладываемых к ним усилий;

наличие обратной связи между величинами прикладываемых усилий и реакцией органов управления.

Рис. 33. Оптимальная поза водителя

а — положение рук на рулевом колесе; б — положение тела

12.2. Пассивная безопасность автомобиля

Способность конструкции ТС обеспечивать защиту

человека от травмирования или смертельного исхода при ДТП называется пассивной безопасностью. Различают внутреннюю пассивную безопасность по отношению к водителю и пассажирам и внешнюю — к пешеходам и уменьшению повреждения автомобиля.

Принцип действия средств пассивной безопасности в основном состоит в уменьшении динамической нагрузки на тело человека в процессе столкновения или опрокидывания ТС, что обеспечивается некото­рой растяжкой времени действия нагрузки за счет деформации элементов пассивной безопасности. При этом используются такие факторы, как ограничение перемещения людей внутри кузова и кабины, допустимое уменьшение внутренних размеров автомобиля, уменьшение травмоопасности деталей, контактирую­щих с человеком.

К средствам пассивной безопасности относят: ударно-прочностные свойства кузова и кабины, бампер, травмобезопасную рулевую колонку, ремни безопасности, замки и петли дверей, сиденья и их крепления, элементы интерьера, подголовники, стекла кузова и кабины и др. Средства пассивной безопасности входят в конструкцию автомобиля и срабатывают автоматически.

Основные требования к пассивной безопасности автомобиля:

- деформации передней и задней частей кузова при столкновении должны обеспечивать допустимый уровень замедления;

- жесткость салона должна быть такой, чтобы сохранить зону жизнеобеспечения;

- рулевое колесо и колонка должны перемещаться и поглощать удар (телескопировать), а также распределять удар по груди водителя без нанесения ему травм;

- должна быть исключена возможность выброса или выпадания пассажиров или водителя при ДТП (надежность дверных замков);

- должны быть предусмотрены индивидуальные защитные удерживающие средства для всех пассажиров и водителя (ремни безопасности, подголовники, пневмоподушки);

- перед пассажирами и водителем не должно быть травмоопасных элементов;

- стекла (ветровое, боковое) не должны быть травмоопасными.

Активная безопасность автомобиля - это... Определение, особенности и требования

Системы безопасности являются центральным направлением развития современных автомобилей. Серьезный эволюционный этап в данном направлении начался с момента появления первых интеллектуальных устройств, которые предотвращали или снижали риски аварии. Сегодня подобные системы образуют целый пласт средств, которые носят название активной безопасности автомобиля. Это преимущественно электронные устройства, которые могут отслеживать определенные параметры состояния машины, своевременно подавая сигналы о возможных угрозах.

Понятие систем активной безопасности

Вам будет интересно:ГАЗ-66 КУНГ: размеры, характеристики и особенности

Для понимания того, что собой представляют такие системы, необходимо для начала рассмотреть принцип действия механизмов, которые являются их противоположностью. То есть речь пойдет о системах пассивной безопасности. Как уже было отмечено, это механические устройства, причем традиционно никак не связанные с электронными средствами управления. Они срабатывают в моменты, когда физически фиксируется внешнее воздействие. Что же касается активной безопасности автомобиля, это комплекс устройств, которые ориентируются на предотвращение ДТП, а также минимизацию рисков, приводящих к другим негативным последствиям. Это могут быть не только электронные приборы с датчиками, но и конструкционные части машины. Более того, на эффективность таких систем влияют и рабочие характеристики автомобиля, которые напрямую никак не связаны с задачами обеспечения безопасности.

Особенности активной безопасности

Вам будет интересно:Дифференциал - устройство, назначение и принцип работы

Главной особенностью данного рода систем можно назвать элемент интеллектуального принятия решений, из-за чего их и называют активными. Разумеется, речь идет об условной «интеллектуальности», поскольку самое сложное устройство этого комплекса все же работает по определенному алгоритму. Другое дело, что и сам пользователь, и управляющая программа могут менять отдельные параметры работы системы в зависимости от конкретных условий эксплуатации. Важно рассмотреть, что такое с точки зрения управления активная безопасность автомобиля. Это во многом автономная система, которая включается в работу, в постоянном режиме обрабатывая исходные данные от датчиков. По их показаниям и принимаются те или иные решения. Причем действие системы может завершаться на этапе подачи тревожного сигнала водителю или же непосредственным влиянием на отдельные механические агрегаты и даже на характер движения машины.

Требования к системам активной безопасности

Вам будет интересно:Эволюция автомобилей. Привет от Леонардо

Нормативный регламент с требованиями к активной безопасности напрямую относится к устройствам и конструкционным узлам. С последними взаимодействуют электронные регуляторы, отвечающие за комплекс функций, обеспечивающих безопасность. Среди основных требований к активной безопасности автомобиля такого типа можно выделить следующие:

  • Все колеса должны контролироваться тормозной системой, команды на которую подаются от одного управляющего органа.
  • К управляющему комплексу активной безопасности должна быть подключена резервная система торможения, также связанная с четырьмя колесами.
  • Самопроизвольные движения рулевого колеса с поддержкой гидроусилителя от нейтрального положения при условии работающего мотора не допускаются.
  • Рулевой механизм не должен иметь следов деформации и прочих конструкционных изменений.
  • Уровень технической жидкости в бачке гидроусилителя рулевого управления всегда должен отвечать нормативным требованиям для конкретного механизма. Не допускаются утечки из резервуара и другие конструкционные нарушения.

Свойства активной безопасности автомобиля

Даже исправный и соответствующий требованиям комплекс активной безопасности не всегда может отвечать должному уровню контроля машины, если его организация и настройки были выполнены без учета эксплуатационных параметров. Чтобы исключить подобные отклонения, следует ориентироваться на рабочие свойства данной системы. В частности, под активной безопасностью понимают свойства автомобиля следующего порядка:

  • Эффективная тормозная система. Указывает на способность машины надежно удерживаться на одном месте и быстро сокращать скоростной режим.
  • Устойчивость и управляемость. Способность машины в условиях аварийного движения производить резкие маневры с целью выхода из критического положения.
  • Обзорность. Свойство, которое позволяет водителю получать максимальный объем визуальной информации о ситуации на дороге с учетом конструкции конкретного автомобиля.
  • Наружная информативность машины. Эффективность средств, которые отвечают за подачу сигналов и внешнее освещение.
  • Шумоизоляция. Высокий уровень шума в салоне напрямую негативно сказывается на состоянии водителя, снижая его внимание и скорость реакций.

Разновидности устройств обеспечения активной безопасности

Вам будет интересно:Рядный двигатель: виды, устройство, преимущества и недостатки

По функциональному назначению и технико-аппаратному исполнению можно выделить несколько групп устройств или комплексных систем, которые образуют общую систему активной безопасности на базе конкретного автомобиля:

  • Системы управления двигателем.
  • Механика тормозной системы.
  • Средства контроля рулевого управления.
  • Электронные устройства.

Наиболее перспективной считается последняя категория элементов активной безопасности автомобиля – ее представляют так называемые ассистенты водителя, которые помогают ему в сложных условиях вождения. Данная помощь носит не только характер информационного оповещения, но и непосредственно влияет на управление, подавая команды на механические узлы и агрегаты в той или иной части. Теперь же рассмотрим наиболее распространенные и технологичные системы данного типа.

Аварийное рулевое управление

Существует целое семейство систем, предназначенных для контроля продольной динамики движения транспортного средства. Наиболее эффективными считаются разработки, в которых сочетаются элементы торможения и аварийного рулевого управления. Такая комбинация обеспечивает возможность контроля и боковой динамики автомобиля. Активная и пассивная безопасность в данном случае формируют единый функциональный комплекс устройств, срабатывающих в моменты угрозы. Например, в условиях гололеда одного лишь экстренного торможения бывает не достаточно. Требуется и соответствующее направление кузова через рулевой контроль. Именно так срабатывает аварийное рулевое управление, одновременно подключая и тормозную систему, и поворотные механизмы. Слаженность взаимодействия достигается посредством сигналов, поступающих от телематического комплекса автомобиля и его датчиков.

Контроль усталости водителя

Согласно статистике, порядка 25 % аварий на дорогах происходит именно по причине усталости автовладельца. Достаточно 4 часов вождения без перерывов, чтобы реакции водителя утратили необходимую остроту. Специально для таких случаев была разработана концепция ассистента, который фиксирует отклонения в поведении водителя, сообщая о необходимости остановки. При этом используются разные принципы выявления признаков усталости – по взгляду водителя (через специальные сенсоры), по контролю движения машины и характеру манипуляций с органами управления. Опять же, при однозначной фиксации отклонений система может или дать соответствующее оповещение, или вмешаться в процесс управления через тормозную систему, руль и т. д.

Системы контроля движения

Обширная категория систем, в постоянном режиме участвующих в управлении автомобилем, корректируя или дополняя действия водителя. Что относится к активной безопасности автомобиля? В качестве основы можно выделить систему поддержки курсовой устойчивости (сохраняет заданную траекторию движения посредством динамической стабилизации), но к сегодняшнему дню этот комплекс значительно расширился и за счет узконаправленных дополнений:

  • Помощник движения по полосе.
  • Помощник при перестроении.
  • Ассистенты при спуске и на подъеме.

Объединяются эти системы влиянием на одинаковые рабочие органы и средства контроля машины. Задействуются функции скоростного регулятора, рулевая колонка, системы торможения, контроль двигателя, оптическая инфраструктура и другие средства оповещения.

Парктроник

Система представляет группу устройств, отвечающих за помощь в управлении автомобилем при выполнении типовых маневров. В данном случае речь идет о парковочном ассистенте, некоторые элементы которого, впрочем, могут задействоваться и в других ситуациях. Итак, парктроник – это активная безопасность автомобиля, которая посредством датчиков и видеокамер позволяет аккуратно и без риска столкновения парковаться. В области бамперов устанавливаются чувствительные элементы (сенсоры), которые подают в салон световые или звуковые сигналы в случае опасного приближения. Видеокамеры – это своего рода опциональное дополнение, позволяющее водителю ориентироваться не только на сигналы, но и самому наблюдать за происходящим в зоне парковки через монитор, подключенный к задней или передней камере.

Системы ночного видения

Плохая видимость на дороге – один из опаснейших врагов любого автомобилиста. Особенно в условиях ночного времени и плохой погоды повышаются риски столкновения с объектами, которые не были должным образом идентифицированы водителем. Для предотвращения подобных ошибок используются устройства с тепловым излучением. Через специальную камеру они воспринимают инфракрасный сигнал, проецируя его на экран пользователя в салоне. Бывают системы активной и пассивной безопасности автомобиля такого типа:

  • Активные отличаются высоким разрешением «картинки» и способностью различать объекты на расстояниях 200-250 м.
  • Пассивные тепловизоры характеризуются более высокой дальностью действия (до 300 м), однако страдают низкой детализацией.

Заключение

Тенденции развития систем автомобильной безопасности говорят о том, что защитные устройства (механические и электронные) становятся все более комплексными и взаимосвязанными. Они охватывают полный условный путь от возможности совершения критической ошибки до ее последствий в виде аварии. Поэтому логично и появление особой категории средств, обеспечивающих послеаварийную безопасность автомобиля. Активные и пассивные системы ориентируются на предотвращение ДТП и минимизацию ущерба непосредственно при столкновении. Что касается послеаварийных систем, то они предназначены для устранения угроз, которые могут проявиться уже после аварийной ситуации. К ним относятся средства сигнализации и оповещения, автоматические огнетушители, модули отключения бортовой электропроводки и т. д.

Источник

Системы активной безопасности

Основным предназначением систем активной безопасности автомобиля является предотвращение аварийной ситуации. При возникновении такой ситуации система самостоятельно (без участия водителя) оценивает вероятную опасность и при необходимости предотвращает ее путем активного вмешательства в процесс управления автомобилем.

Применение систем активной безопасности позволяет в различных критических ситуациях сохранять контроль над автомобилем или, другими словами, сохранить курсовую устойчивость и управляемость автомобиля.

Под курсовой устойчивостью понимается способность автомобиля сохранять движение по заданной траектории, противодействуя силам, вызывающим занос и опрокидывание.

Управляемость заключается в способности автомобиля двигаться в заданном водителем направлении.

Наиболее известными и востребованными системами активной безопасности являются:

Перечисленные системы активной безопасности конструктивно связаны и тесно взаимодействуют с тормозной системой автомобиля и значительно повышают ее эффективность. Ряд систем может управлять величиной крутящего момента через систему управления двигателем.

Имеются также вспомогательные системы активной безопасности (ассистенты), предназначенные для помощи водителю в трудных с точки зрения вождения ситуациях. Помимо своевременного предупреждения водителя о возможной опасности, системы осуществляют и активное вмешательство в управление автомобилем, используя при этом тормозную систему и рулевое управление.

Большое количество таких систем появилось и появляется в связи со стремительным развитием электронных систем управления (появлением новых видов входных устройств, повышением производительности электронных блоков управления).

К вспомогательным системам активной безопасности относятся:

Промежуточное положение между активными и пассивными системами безопасности занимают превентивные системы безопасности.


Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)
Загрузка...