Датчик лямбда зонда


Всё, что нужно знать о лямбда зондах. — Nissan Primera, 2.0 л., 2006 года на DRIVE2

Эту статью сохраняю скорей для себя и как пособие для тех, кто будет задавать такие частые вопросы по поводу датчиков кислорода (тема довольно актуальная).В предыдущей теме мы говорили о наших катализаторах (здесь : www.drive2.ru/l/1861652/). Теперь же узнаем больше и подробней о лямбда зондах:

Основные положения и функции Кислородного датчика :Теория.Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля. Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Как работает Лямбда Зонд ( кислородный датчик )Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе 1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется блоком управления автомобилем ( ЭБУ ) без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 < L < 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2). Таким образом этот материал обеспечивает идеальные показания сильно различные друг от друга даже при минимальном изменении измеряемой среды.

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе). Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили. По мере развития автомобиле строения, так же ужесточаются и нормы экологических выбросов, таким образом мировые законодатели постоянно ужесточают экологические нормы. Это способствовало дальнейшему развитию лямбда зондов: для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев ( кислородные датчики с подогревом ) . Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

Рис. 3. Конструкция датчика кислорода с подогревателем 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В). В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения. Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Если Лямбда Зонд «врет»

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире. Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются.Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует». При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система L-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно. Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов а – без подогревателя; б, с – с подогревателем. * цвет вывода может отличаться от указанного.

В связи с тяжелыми условиями эксплуатации и минимальными значениями напряжения проблемы могут возникнуть очень легко. Зная, как работает датчик, вы получаете ключ к успешной диагностике кислородных датчиков. Контакт 1 — Нагреватель + Контакт 2 — Нагреватель — Контакт 3 — Сигнал напряжения Контакт 4 — Земля Обратите внимание, что все проверки сопротивления и непрерывности цепи необходимо выполнять при разъединенной цепи. Если у вас есть диагностический код неисправности, он даст вам некоторое представление о целостности цепи, но вы узнаете гораздо больше, если сами проведете испытание датчика. На датчике с четырьмя проводами два провода отвечают за нагревательный элемент, который предназначен для того, чтобы как можно быстрее довести температуру датчика до рабочей температуры 400°C. Самое простое, с чего можно начать, это проверить целостность цепи элемента нагревателя. Отключите датчик и измерьте сопротивление на контактах 1 и 2. Если оно лежит в пределах 5–30 Ом, проверьте сигнал, который поступает от электронного блока управления двигателем. Обычно он приводится в действие за счет сигнала модуляции длительности импульса (PWM), поступающего от электронного блока управления. Чтобы замерить воздействующий сигнал нагревателя, потребуется задействовать осциллоскоп. Следующий шаг — испытание самого датчика; сначала проверьте контакт между зажимом заземления 4 и землей. Если это возможно, исследуйте сигнал только после того, как двигатель достигнет рабочих условий, т.е. достаточно прогреется, и система управления начнет работать с замкнутым контуром. Сигнал должен переключаться между богатым и бедным состояниями ( с 0,2–0,3 В на 0,7–0,9 В); данное переключение должно происходить приблизительно каждую секунду. Если сигнал мал (среднее напряжение 0,3 В) или слишком велик (среднее напряжение 0,7 В), то, вероятно, датчик стал жертвой коррозии на платиновых электродах или загрязнения в отверстиях. Если автомобиль оснащен несколькими кислородными датчиками pre и post, можно получить более точную информацию. Используя данные двух или четырех каналов и накладывая сигналы, можно получить точные сведения о времени реакции и операционной/рабочей эффективности: сигналы от исправных датчиков должны быть зеркальным отражением друг друга».

Виды кислородных датчиков.

Существует несколько классификаций автомобильных кислородных датчиков: 1. По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики. 2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые 3. По способу крепления в выхлопную трубу: резьбовые и фланцевые. 4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).

Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами: 1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя; 2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента; 3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание. Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.Взаимозаменяемость. Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена не подогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора. Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.

Расположение Кислородного датчика Ниссан :Кислородный датчик расположен на выпускном тракте двигателя. Если это рядный двигатель — то кислородный датчик расположен непосредственно на чугунном выпускном коллекторе, если же это V — образный двигатель или иной двигатель не с единым выпускным коллектором, то кислородный датчик располагается в месте схождения основных отводов выпускных коллекторов.

Почему следует заменить неисправный кислородный датчик?Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.

Инструкция по замене, универсальная: Чтобы снять старый и установить новый кислородный датчик нужно убедиться в том, что зажигание выключено, а провода датчика отсоединены. Перед установкой нового зонда проверяют его маркировку на соответствие указанной в инструкции по эксплуатации, осматривают автомобиль на отсутствие механических повреждений, наличие кольца уплотнения, противопригарной смазки на резьбовой части. Затем датчик кислорода затягивают до полностью герметичного соединения, соединяя электроразъем, после чего можно проверять работоспособность нового датчика. Иногда датчик кислорода присоединяется к трубопроводу специальной пластиной, в пространстве между ней и трубопроводом находится прокладка с функцией герметика. Проверка работоспособности датчика производится только при его нагреве до температуры 350 градусов специальным оборудованием: газоанализатором, осциллографом, вольтметром, омметром. Поэтому сделать правильную замену кислородного датчика на Nissan и других автомобилях можно лишь в специализированном автосервисе.

Восстановление кислородного датчика : Проблема всех легковых автомобилей в России является завышенный расход бензина на подержанных автомобилях. Главной причиной этого не качественное топливо, которое загрязняет систему автомобиля, и в первую очередь лямбда зонт, в простонародье называют кислородным датчиком, который находиться на каталитическом нейтрализаторе(система очистки отработанных газов) Если отказ лямбда-зонда (ЛЗ) не вызван необратимыми изменениями в структуре его основы – слое циркониевой керамики, то датчик можно попробовать «оживить». Дело в том, что рабочая поверхность ЛЗ под защитным колпачком со временем покрывается нагаром и свинцовыми отложениями выхлопных газов. Датчик начинает «врать». Если этот налет удалить, то работоспособность ЛЗ восстанавливается. Поверхность датчика не позволяет производить ее чистку механическим способом (абразивной шкуркой или надфилем), т. к. вместе с нагаром с керамической основы неизбежно удаляются слои платинового напыления. Этот датчик отвечает за качество топливной смеси, ну и соответственно если он загрязнен, сигнал на компьютер автомобиля не будет соответствовать норме. тем самым машинка начинает кушать много бензина, покупка нового датчика сильно бьет по бюджету, его цена иногда доходит до 30 тысяч рублей в зависимости от марки автомобиля. И так оживляем!

Инструкция 1:1шаг Безопасно очистить ЛЗ можно, промыв его в ортофосфорной кислоте, которая за 10 – 20 мин. разъедает загрязнения, не трогая платиновые электроды. Перед промывкой датчик надо вскрыть. Для этого на токарном станке тонким резцом аккуратно, у самого основания отрезают защитный колпачок, изготовленный из нержавеющей стали. Использовать для этих целей ножовку по металлу нельзя – ею можно повредить керамическое тело датчика.2шаг Процедуру очистки можно ускорить, используя тонкую кисточку из натуральной щетины. Кисточкой осторожно наносят ортофосфорную кислоту, равномерно омывая, керамический стержень ЛЗ со всех сторон. Не следует погружать датчик в кислоту целиком – моется только его рабочая часть. По мере очищения черно-коричневая поверхность стержня приобретает стальной оттенок: это блестит платина, запыленная на керамику основы. После очистки датчик хорошо промывают водой и высушивают, а защитный колпачок крепят на место с помощью аргоновой сварки. Если под рукой нет необходимого оборудования, то колпачок можно не срезать. Вместо этого в нем с помощью напильника делают два «окошка» шириной 3 – 4 мм и через них с помощью такой же кисточки промывают датчик кислотой.

3шаг Восстановленный датчик завинчивают на свое место в машине, предварительно проверив состояние уплотнительного кольца. Промывку ЛЗ можно производить многократно, по мере его загрязнения. Если «реанимация» все же не принесла ожидаемых результатов, это значит, что датчик кислорода вышел из строя окончательно и вам ничего не остается, как идти в магазин за новым «информатором».

Инструкция 2:1. Выворачивание l-зонда на холодном двигателе может оказаться крайне затруднительным ввиду теплового сжатия металла выпускного коллектора/трубы системы выпуска. Во избежание риска повреждения компонентов, прежде чем приступать к снятию датчика, прогрейте двигатель в течение пары минут, — постарайтесь не обжечься о разогретые поверхности в процессе выполнения процедуры:a) Кислородные датчики оборудованы вмонтированным жгутом электропроводки с контактным разъемом. Повреждение данного жгута приводит к необратимому выходу датчика из строя, — соблюдайте осторожность; b) Старайтесь не допускать попадания на контактный разъем и жалюзи датчика масла, смазки, грязи, влаги и т.п.;c) НИ в коем случае не применяйте для чистки датчика никакие растворители;

d) Старайтесь не ронять и резко не стряхивать датчик. 2. Поддомкратьте автомобиль и установите его на подпорки. 3. Аккуратно отсоедините разъем электропроводки кислородного датчика. 4. При помощи специального ключа осторожно выверните зонд из соответствующей секции системы выпуска отработавших газов. 5. Перед вворачиванием датчика смажьте его резьбовую часть антиприхватывающим герметиком. 6. Вверните датчик на свое штатное место и прочно затяните его. 7. Опустите автомобиль на землю и подсоедините к датчику электропроводку. 8. Произведите автомобиля ходовые испытания. Проверьте память модуля управления на наличие кодов неисправностей.

И теперь несколько слов о брендах современных датчиков кислорода.Основные производители и отзывы о них можно посмотреть здесь по ссылкам:

Bosch avto.pro/makers/bosch/

Denso avto.pro/makers/denso/NGK avto.pro/makers/ngk/PROFIT avto.pro/makers/profit/

Материал о том КАК выбрать лямбда зонд -можно посмотреть здесь : avto.pro/autonews/kak_vib…at_lyambda_zond-20170315/

Продолжение о пятиконтактных датчиках тут:alflash.com.ua/laf.htm

Источник: moi-nissan.ru/ogo-go/672-…chik-o2-lyambda-zond.html© Автоклуб moi-nissan.ru

Page 2

Эту статью сохраняю скорей для себя и как пособие для тех, кто будет задавать такие частые вопросы по поводу датчиков кислорода (тема довольно актуальная).В предыдущей теме мы говорили о наших катализаторах (здесь : www.drive2.ru/l/1861652/). Теперь же узнаем больше и подробней о лямбда зондах:

Основные положения и функции Кислородного датчика :Теория.Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля. Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Как работает Лямбда Зонд ( кислородный датчик )Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе 1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется блоком управления автомобилем ( ЭБУ ) без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 < L < 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2). Таким образом этот материал обеспечивает идеальные показания сильно различные друг от друга даже при минимальном изменении измеряемой среды.

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе). Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили. По мере развития автомобиле строения, так же ужесточаются и нормы экологических выбросов, таким образом мировые законодатели постоянно ужесточают экологические нормы. Это способствовало дальнейшему развитию лямбда зондов: для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев ( кислородные датчики с подогревом ) . Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

Рис. 3. Конструкция датчика кислорода с подогревателем 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В). В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения. Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Если Лямбда Зонд «врет»

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире. Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются.Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует». При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система L-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно. Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов а – без подогревателя; б, с – с подогревателем. * цвет вывода может отличаться от указанного.

В связи с тяжелыми условиями эксплуатации и минимальными значениями напряжения проблемы могут возникнуть очень легко. Зная, как работает датчик, вы получаете ключ к успешной диагностике кислородных датчиков. Контакт 1 — Нагреватель + Контакт 2 — Нагреватель — Контакт 3 — Сигнал напряжения Контакт 4 — Земля Обратите внимание, что все проверки сопротивления и непрерывности цепи необходимо выполнять при разъединенной цепи. Если у вас есть диагностический код неисправности, он даст вам некоторое представление о целостности цепи, но вы узнаете гораздо больше, если сами проведете испытание датчика. На датчике с четырьмя проводами два провода отвечают за нагревательный элемент, который предназначен для того, чтобы как можно быстрее довести температуру датчика до рабочей температуры 400°C. Самое простое, с чего можно начать, это проверить целостность цепи элемента нагревателя. Отключите датчик и измерьте сопротивление на контактах 1 и 2. Если оно лежит в пределах 5–30 Ом, проверьте сигнал, который поступает от электронного блока управления двигателем. Обычно он приводится в действие за счет сигнала модуляции длительности импульса (PWM), поступающего от электронного блока управления. Чтобы замерить воздействующий сигнал нагревателя, потребуется задействовать осциллоскоп. Следующий шаг — испытание самого датчика; сначала проверьте контакт между зажимом заземления 4 и землей. Если это возможно, исследуйте сигнал только после того, как двигатель достигнет рабочих условий, т.е. достаточно прогреется, и система управления начнет работать с замкнутым контуром. Сигнал должен переключаться между богатым и бедным состояниями ( с 0,2–0,3 В на 0,7–0,9 В); данное переключение должно происходить приблизительно каждую секунду. Если сигнал мал (среднее напряжение 0,3 В) или слишком велик (среднее напряжение 0,7 В), то, вероятно, датчик стал жертвой коррозии на платиновых электродах или загрязнения в отверстиях. Если автомобиль оснащен несколькими кислородными датчиками pre и post, можно получить более точную информацию. Используя данные двух или четырех каналов и накладывая сигналы, можно получить точные сведения о времени реакции и операционной/рабочей эффективности: сигналы от исправных датчиков должны быть зеркальным отражением друг друга».

Виды кислородных датчиков.

Существует несколько классификаций автомобильных кислородных датчиков: 1. По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики. 2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые 3. По способу крепления в выхлопную трубу: резьбовые и фланцевые. 4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).

Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами: 1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя; 2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента; 3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание. Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.Взаимозаменяемость. Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена не подогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора. Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.

Расположение Кислородного датчика Ниссан :Кислородный датчик расположен на выпускном тракте двигателя. Если это рядный двигатель — то кислородный датчик расположен непосредственно на чугунном выпускном коллекторе, если же это V — образный двигатель или иной двигатель не с единым выпускным коллектором, то кислородный датчик располагается в месте схождения основных отводов выпускных коллекторов.

Почему следует заменить неисправный кислородный датчик?Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.

Инструкция по замене, универсальная: Чтобы снять старый и установить новый кислородный датчик нужно убедиться в том, что зажигание выключено, а провода датчика отсоединены. Перед установкой нового зонда проверяют его маркировку на соответствие указанной в инструкции по эксплуатации, осматривают автомобиль на отсутствие механических повреждений, наличие кольца уплотнения, противопригарной смазки на резьбовой части. Затем датчик кислорода затягивают до полностью герметичного соединения, соединяя электроразъем, после чего можно проверять работоспособность нового датчика. Иногда датчик кислорода присоединяется к трубопроводу специальной пластиной, в пространстве между ней и трубопроводом находится прокладка с функцией герметика. Проверка работоспособности датчика производится только при его нагреве до температуры 350 градусов специальным оборудованием: газоанализатором, осциллографом, вольтметром, омметром. Поэтому сделать правильную замену кислородного датчика на Nissan и других автомобилях можно лишь в специализированном автосервисе.

Восстановление кислородного датчика : Проблема всех легковых автомобилей в России является завышенный расход бензина на подержанных автомобилях. Главной причиной этого не качественное топливо, которое загрязняет систему автомобиля, и в первую очередь лямбда зонт, в простонародье называют кислородным датчиком, который находиться на каталитическом нейтрализаторе(система очистки отработанных газов) Если отказ лямбда-зонда (ЛЗ) не вызван необратимыми изменениями в структуре его основы – слое циркониевой керамики, то датчик можно попробовать «оживить». Дело в том, что рабочая поверхность ЛЗ под защитным колпачком со временем покрывается нагаром и свинцовыми отложениями выхлопных газов. Датчик начинает «врать». Если этот налет удалить, то работоспособность ЛЗ восстанавливается. Поверхность датчика не позволяет производить ее чистку механическим способом (абразивной шкуркой или надфилем), т. к. вместе с нагаром с керамической основы неизбежно удаляются слои платинового напыления. Этот датчик отвечает за качество топливной смеси, ну и соответственно если он загрязнен, сигнал на компьютер автомобиля не будет соответствовать норме. тем самым машинка начинает кушать много бензина, покупка нового датчика сильно бьет по бюджету, его цена иногда доходит до 30 тысяч рублей в зависимости от марки автомобиля. И так оживляем!

Инструкция 1:1шаг Безопасно очистить ЛЗ можно, промыв его в ортофосфорной кислоте, которая за 10 – 20 мин. разъедает загрязнения, не трогая платиновые электроды. Перед промывкой датчик надо вскрыть. Для этого на токарном станке тонким резцом аккуратно, у самого основания отрезают защитный колпачок, изготовленный из нержавеющей стали. Использовать для этих целей ножовку по металлу нельзя – ею можно повредить керамическое тело датчика.2шаг Процедуру очистки можно ускорить, используя тонкую кисточку из натуральной щетины. Кисточкой осторожно наносят ортофосфорную кислоту, равномерно омывая, керамический стержень ЛЗ со всех сторон. Не следует погружать датчик в кислоту целиком – моется только его рабочая часть. По мере очищения черно-коричневая поверхность стержня приобретает стальной оттенок: это блестит платина, запыленная на керамику основы. После очистки датчик хорошо промывают водой и высушивают, а защитный колпачок крепят на место с помощью аргоновой сварки. Если под рукой нет необходимого оборудования, то колпачок можно не срезать. Вместо этого в нем с помощью напильника делают два «окошка» шириной 3 – 4 мм и через них с помощью такой же кисточки промывают датчик кислотой.

3шаг Восстановленный датчик завинчивают на свое место в машине, предварительно проверив состояние уплотнительного кольца. Промывку ЛЗ можно производить многократно, по мере его загрязнения. Если «реанимация» все же не принесла ожидаемых результатов, это значит, что датчик кислорода вышел из строя окончательно и вам ничего не остается, как идти в магазин за новым «информатором».

Инструкция 2:1. Выворачивание l-зонда на холодном двигателе может оказаться крайне затруднительным ввиду теплового сжатия металла выпускного коллектора/трубы системы выпуска. Во избежание риска повреждения компонентов, прежде чем приступать к снятию датчика, прогрейте двигатель в течение пары минут, — постарайтесь не обжечься о разогретые поверхности в процессе выполнения процедуры:a) Кислородные датчики оборудованы вмонтированным жгутом электропроводки с контактным разъемом. Повреждение данного жгута приводит к необратимому выходу датчика из строя, — соблюдайте осторожность; b) Старайтесь не допускать попадания на контактный разъем и жалюзи датчика масла, смазки, грязи, влаги и т.п.;c) НИ в коем случае не применяйте для чистки датчика никакие растворители;

d) Старайтесь не ронять и резко не стряхивать датчик. 2. Поддомкратьте автомобиль и установите его на подпорки. 3. Аккуратно отсоедините разъем электропроводки кислородного датчика. 4. При помощи специального ключа осторожно выверните зонд из соответствующей секции системы выпуска отработавших газов. 5. Перед вворачиванием датчика смажьте его резьбовую часть антиприхватывающим герметиком. 6. Вверните датчик на свое штатное место и прочно затяните его. 7. Опустите автомобиль на землю и подсоедините к датчику электропроводку. 8. Произведите автомобиля ходовые испытания. Проверьте память модуля управления на наличие кодов неисправностей.

И теперь несколько слов о брендах современных датчиков кислорода.Основные производители и отзывы о них можно посмотреть здесь по ссылкам:

Bosch avto.pro/makers/bosch/

Denso avto.pro/makers/denso/NGK avto.pro/makers/ngk/PROFIT avto.pro/makers/profit/

Материал о том КАК выбрать лямбда зонд -можно посмотреть здесь : avto.pro/autonews/kak_vib…at_lyambda_zond-20170315/

Продолжение о пятиконтактных датчиках тут:alflash.com.ua/laf.htm

Источник: moi-nissan.ru/ogo-go/672-…chik-o2-lyambda-zond.html© Автоклуб moi-nissan.ru

www.drive2.ru

Устройство и принцип работы кислородного датчика

Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.

Коэффициент избытка воздуха λ

Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.

В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.

Зависимость мощности (P) и расхода топлива (Q) от коэффициента избытка воздуха

Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это «на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы».

В зависимости от значения λ различают три вида топливовоздушной смеси:

  • λ = 1 — стехиометрическая смесь;
  • λ < 1 — «богатая» смесь (избыток — топливо; недостаток — воздух);
  • λ > 1 — «бедная» смесь (избыток — воздух; недостаток — топливо).

Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 («богатая» смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа каталитического нейтрализатора происходит при стехиометрическом составе топливовоздушной смеси.

Читайте также:  Назначение системы EGR и особенности ее работы

Назначение датчиков кислорода

Расположение кислородных датчиков в системе выхлопа

Стандартно в современных автомобилях используется два датчика кислорода (для рядного двигателя). Один перед катализатором (верхний лямбда-зонд), а второй после него (нижний лямбда-зонд). Различий в конструкции верхнего и нижнего датчиков нет, они могут быть одинаковыми, но выполняют разные функции.

Верхний или передний кислородный датчик определяет содержание оставшегося кислорода в отработавших газах. По сигналу с данного датчика блок управления двигателем «понимает», на каком типе топливовоздушной смеси работает двигатель (стехиометрической, богатой или бедной). В зависимости от показаний кислородника и требуемого режима работы, ЭБУ корректирует количество топлива, подаваемого в цилиндры. Как правило, топливоподача корректируется в сторону стехиометрической смеси. Следует отметить, что при прогреве двигателя сигналы с датчика игнорируются ЭБУ двигателя до достижения им рабочей температуры. Нижний или задний лямбда-зонд используется для дополнительной корректировки состава смеси и контроля исправности работы каталитического нейтрализатора.

Конструкция и принцип работы кислородного датчика

Конструкция кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод — осуществляет контакт с выхлопными газами.
  • Внутренний электрод — контактирует с атмосферой.
  • Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит — расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Устройство наконечника лямбда-зонда

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Виды лямбда-зондов

Помимо циркониевых используются также титановые и широкополосные датчики кислорода.

  • Титановые. Этот вид кислородников имеет чувствительный элемент из диоксида титана. Рабочая температура такого датчика начинается от 700 °C. Титановые лямбда-зонды не требуют наличия атмосферного воздуха, поскольку принцип их работы основан на изменении выходного напряжения, в зависимости от концентрации кислорода в выхлопе.
  • Широкополосный лямбда-зонд представляет собой усовершенствованную модель. Он состоит из цикрониевого датчика и закачивающего элемента. Первый измеряет концентрацию кислорода в отработавших газах, фиксируя напряжение, вызванное разницей потенциалов. Далее происходит сравнение показания с эталонной величиной (450 мВ), и, в случае отклонения, подается ток, провоцирующий закачивание ионов кислорода из выхлопа. Это происходит до тех пор, пока напряжение не станет равным заданному.
Читайте также:  Виды, устройство и принцип работы глушителя автомобиля

Ресурс кислородника и его неисправности

Лямбда-зонд — один из наиболее быстро изнашиваемых датчиков. Это связано с тем, что он постоянно контактирует с отработавшими газами и его ресурс напрямую зависит от качества топлива и исправности двигателя. Например, циркониевый кислородник имеет ресурс порядка 70-130 тысяч километров пробега.

Поскольку работа обоих кислородных датчиков (верхнего и нижнего) контролируется системой бортовой диагностики OBD-II, при выходе из строя любого из них будет зафиксирована соответствующая ошибка, а на панели приборов загорится контрольная лампа неисправности «Check Engine». Диагностировать неисправность в данном случае можно с помощью специального диагностического сканера.

Сигнал исправного кислородного датчика

При исправной работе кислородного датчика характеристика сигнала представляет собой правильную синусоиду, демонстрирующую частоту переключений не менее 8 раз в течение 10 секунд. Если датчик вышел из строя, то форма сигнала будет отличаться от эталонной, либо его отклик на изменение состава смеси существенно замедлится.

Основные неисправности кислородного датчика:

  • износ в процессе эксплуатации («старение» датчика);
  • обрыв электрической цепи нагревательного элемента;
  • загрязнение.

Все эти виды проблем могут быть спровоцированы использованием некачественного топлива, перегревом, добавлением различных присадок, попаданием в зону работы датчика масел и чистящих средств.

Признаки неисправности кислородника:

  • Индикация сигнальной лампы неисправности на приборной панели.
  • Потеря мощности.
  • Слабый отклик на педаль газа.
  • Неровная работа двигателя на холостых оборотах.

Неисправность датчика может привести к сложностям в управлении автомобилем и стать причиной повышенного износа остальных деталей двигателя. А поскольку он не подлежит ремонту, его необходимо сразу заменить на новый.

(12 оценок, среднее: 4,58 из 5) Загрузка...

techautoport.ru

Как проверить лямбда зонд на работоспособность своими руками мультиметром и осциллографом, где находится датчик кислорода в авто

Современные транспортные средства оснащены множеством датчиков, контролирующих работоспособность узлов и агрегатов. Одним из основных датчиков автомобиля является датчик остаточного кислорода (λ-зонд). Однако лишь немногие автомобилисты знают, как проверить лямбда-зонд самостоятельно, сэкономив время и финансы.

Что такое лямбда-зонд, и где он находится

В связи с ужесточением экологических норм для уменьшения токсичности выхлопных газов машины начали оборудовать каталитическим нейтрализатором (катализатором). Качество и продолжительность его работы находится в прямой зависимости от состава топливно-воздушной смеси (ТВС). В зависимости от сигналов, передаваемых лямбда-зондом, регулируется процентное соотношение в смеси топлива и воздуха.

Лямбда-зонд — система, определяющая, какое количество остаточного кислорода содержится в выхлопных газах. Иначе его можно назвать — кислородный датчик.

Располагается лямбда-зонд в выпускном коллекторе перед каталитическим нейтрализатором

Качественная очистка от токсичных выхлопов в катализаторе проводится только при наличии в них кислорода. Для контроля эффективности действия нейтрализатора и повышения точности исследования состояния выхлопных газов на многих моделях устанавливают второй лямбда-зонд на выходе катализатора.

Для повышения эффективности на современных автомобилях устанавливается дополнительный лямбда-зонд на выходе катализатора

Главной функцией лямбда-зонда считается измерение количество кислорода, содержащегося в выхлопных газах, и сравнение его с эталонным.

Электрические импульсы от кислородного датчика поступают в электронный блок управления (ЭБУ) топливной системой. Относительно этих данных ЭБУ регулирует состав ТВС, подаваемой в цилиндры.

Схема установки основного и дополнительного датчиков кислорода в автомобиле

Результатом совместной работы лямбда-зонда и ЭБУ является получение стехиометрической (теоретически идеальной, оптимальной) ТВС, состоящей из 14,7 частей воздуха и 1 части топлива, при которой λ=1. У обогащенной смеси (избыток бензина) λ1.

График зависимости мощности (P) и расхода топлива (Q) от величины (λ)

Разновидности лямбда-зондов

Современные машины оснащаются следующими датчиками:

  • Циркониевые;
  • Титановые;
  • Широкополосные.

Циркониевый

Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).

Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)

Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.

Важно! Повышение температуры датчика до 950°C ведёт к его перегреву.

Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.

Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.

Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода

Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.

По количеству проводов можно выделить несколько типов циркониевых устройств:

  1. В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
  2. Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
  3. Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.

Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики

Титановый

Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.

Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.

Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)

Широкополосный

Конструктивно отличается от предыдущих 2 камерами (ячейками):

В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.

Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.

Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6

Симптомы неисправности

Основными признаками, свидетельствующими о поломке кислородного датчика, считаются:

  • Повышенная токсичность выхлопных газов;
  • Нестабильная, прерывистая разгонная динамика;
  • Кратковременное включение лампы «CHECK ENGINE» при резком увеличении оборотов;
  • Нестабильные, постоянно меняющиеся холостые обороты;
  • Увеличение расхода топлива;
  • Перегрев катализатора, сопровождающийся потрескивающими звуками в его зоне при заглушённом моторе;
  • Постоянно горящий индикатор «CHECK ENGINE»;
  • Беспричинная сигнализация бортового компьютера о переобогащённой ТВС.

Нужно иметь в виду, что все эти отклонения могут быть симптомами и других поломок.

Длительность службы лямбда-зонда примерно 60-130 тыс. км. Причинами сокращения срока службы и поломки устройства может стать:

  • Применение при монтаже датчиков, не рассчитанных на высокие температуры герметиков (силиконовых);
  • Некачественный бензин (повышенное содержание этила, свинца, тяжёлых металлов);
  • Попадание масла в выхлопную систему в результате износа маслосъёмных колец или колпачков;
  • Перегрев датчика в результате некорректно выставленного зажигания, переобогащённой ТВС;
  • Множественные попытки завести мотор, приводящие к проникновению горючих смесей в систему выхлопа;
  • Нестабильный контакт, замыкание на массу, обрыв выходного провода;
  • Нарушение целостности конструкции датчика.

Способы диагностики кислородного датчика

Специалисты советуют проверять корректность работы лямбда-зонда каждые 10000 км пробега, даже если проблем в работе устройства не наблюдается.

Диагностику начинают с проверки надёжности соединения клеммы с датчиком и на наличие механических повреждений. Далее выкручивают лямбда-зонд из коллектора и осматривают защитный кожух. Небольшие отложения очищают.

Если в ходе визуального осмотра на защитной трубке датчика кислорода были выявлены следы сажи, сильные белые, серые или блестящие отложения, то лямбда-зонд следует заменить

Как проверить лямбда-зонд мультиметром (тестером)

Проверка датчика на работоспособность проводится по следующим параметрам:

  • Напряжение в нагревательной цепи;
  • «Опорное» напряжение;
  • Состояние нагревателя;
  • Сигнал датчика.

Схема подключения к лямбда-зонду в зависимости от его типа

Наличие напряжения в цепи подогрева определяют мультиметром или вольтметром в следующей последовательности:

  1. Не снимая разъём с датчика, включают зажигание.
  2. Щупы присоединяют к цепи подогрева.
  3. Показания на приборе должны совпадать с напряжением на аккумуляторе — 12В.

«+» идёт на датчик от аккумулятора через предохранитель. При его отсутствии прозванивают эту цепь.

«—» поступает от блока управления. Если он не обнаружен, проверяют клеммы цепи «лямбда-зонд — ЭБУ».

Замеры опорного напряжения проводятся теми же аппаратами. Последовательность действий:

  1. Включают зажигание.
  2. Замеряют напряжение между сигнальным проводом и массой.
  3. Прибор должен показать 0,45 В.

Для проверки нагревателя мультиметр выставляют в режим омметра. Этапы диагностики:

  1. Снимают разъём с устройства.
  2. Замеряют сопротивление между контактами нагревателя.
  3. Показания на разных кислородниках различные, но не должны выходить за пределы 2-10 Ом.

Важно! Отсутствие сопротивления говорит о разрыве в цепи нагревателя.

Вольтметр или мультиметр используются для проверки сигнала датчика. Для этого:

  1. Заводят двигатель.
  2. Прогревают его до рабочей температуры.
  3. Щупы прибора соединяют с сигнальным проводом и проводом массы.
  4. Обороты мотора увеличивают до 3000 об/мин.
  5. Следят за замерами напряжения. Должны наблюдаться скачки в диапазоне от 0,1 В до 0,9 В.

Если хотя бы при одной из проверок показатели разнятся от нормы, датчик неисправен и нуждается в замене.

Видео: проверка лямбда-зонда тестером

Проверка осциллографом

Главным преимуществом данной диагностики лямбда-зонда перед проверкой вольтметром и мультиметром является фиксация времени между однотипными изменениями выходного напряжения. Оно не должно превышать 120 мс.

Очерёдность действий:

  1. Щуп прибора подключают к сигнальному проводу.
  2. Мотор прогревают до рабочей температуры.
  3. Обороты двигателя повышают до 2000-2600 об/мин.
  4. По показаниям осциллографа определяют работоспособность кислородного датчика.

Диагностика осциллографом даёт наиболее полную картину работы лямбда-зонда

Превышение временного показателя или пересечение пределов напряжения нижнего 0,1 В и верхнего 0,9 В говорит о неисправном кислородном датчике.

Видео: диагностика датчика кислорода осциллографом

Другие способы проверки

Если в автомобиле есть бортовая система, то по сигналу «CHECK ENGINE», выдающему определённую ошибку, можно диагностировать состояние лямбда-зонда.

Перечень ошибок лямбда-зонда

Чтобы лямбда-зонд работал долго и эффективно, необходимо заправлять автомобиль только качественным топливом. Плановая и своевременная диагностика датчика кислорода поможет вовремя обнаружить его неисправность. Эта мера способна продлить срок эксплуатации не только самого датчика, но и катализатора.

carnovato.ru

Лямбда зонд, где находится, для чего нужен, за что отвечает датчик кислорода

На автомобилях с электронным зажиганием для ограничения выброса вредных веществ в атмосферу устанавливают лямбда зонд, который реагирует на содержание углекислоты и других опасных примесей. Свое название этот элемент получил по букве греческого алфавита, которая выбрана для обозначения коэффициента избытка воздуха в топливовоздушной смеси.

Устанавливают кислородный датчик в магистрали выхлопа. Зная, что такое лямбда зонд в автомобиле и как он устроен, можно выбрать оптимальное решение при обнаружении неполадок.

Что такое лямбда зонд в машине и для чего он нужен

Назначение лямбда-зонда — контроль уровня вредных примесей в выхлопных газах. Этот элемента позволяет поддерживать содержание углекислоты в пределах 0,2 – 0,3 %. Основная функция — подача электрического сигнала в электронный блок управления силового агрегата. Это единственное, на что влияет лямбда зонд, но роль датчика нельзя преуменьшать.

Установкой кислородных датчиков в выхлопной трубе нового автомобиля занимается производитель. В дальнейшем при эксплуатации машины рекомендуются визуальная проверка и компьютерное тестирование лямбда-зонда не реже одного раза в год или после 10 – 15 тыс. км пробега. Если компонент будет поврежден или изношен, то придется его заменить. Если не получается замерить содержание кислорода, это может станет причиной поломки двигателя.

Устройство и принцип работы лямбда зонда

Лямбда зонд представляет собой обычный электрический элемент, через который проходят выхлопные газы. Устройство датчика кислорода предполагает наличие внутри корпуса токопроводящего элемента, электродов, сигнального контакта и заземления. Выходной электрический сигнал формируется при изменении напряжения в зависимости от состава выхлопного потока.

Работа датчика основана на принципе сравнения уровня кислорода в отработавших газах и атмосферном воздухе. Установка внутри трубы до и после каталитического нейтрализатора полностью исключает попадание вредных веществ за пределы системы. Электрическая схема в устройстве такого датчика кислорода задействуется только после разогрева до температуры 300 – 400 ºC, что необходимо для появления электропроводимости твердого электролита.

Принцип работы лямбда зонда позволяет выявить даже малейшее превышение норм по опасным веществам. Но даже при заправке горючего высокого качества с минимальным содержанием примесей через 100 – 150 тыс. км пробега датчики кислорода, а часто и катализаторы (нейтрализаторы), приходится менять.

Каких видов бывают лямбда зонды?

Независимо от того, как работает датчик кислорода и в какой части системы он установлен, для получения электрического сигнала о составе выброса внутри предусмотрен твердый электролитический элемент. В зависимости от типа этого компонента различают следующие виды зондов:

  • циркониево-оксидные, способные определить количество воздуха в топливе в относительной величине (больше/меньше);
  • датчики с высокой чувствительностью, способные точно определить соотношение компонентов топливной смеси (Denso);
  • титановые, которые работают без доступа атмосферного кислорода.

На автомобили устанавливают датчики, предназначенные для конкретной марки или модели, а также изделия универсальной конструкции. Последние не комплектуют оригинальным разъемом – его, увы, приходится искать отдельно.

Информацию о составе выхлопа на контроллер подают и датчики других видов, которые отличаются количеством контактов (1- 6), способом установки (резьба/фланец), а также узко- или широкополосные модели по диапазону измерения (до коэффициента 1,6). Все варианты подключаются и работают по аналогичной схеме с передачей сигнала в ЭБУ для корректировки состава топливовоздушной смеси и объема впрыска топлива.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда - это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Заключение

Даже одна–две заправки топливом низкого качества могут стать причинами выхода из строя лямбда зонда. В таких случаях нарушается работа ЭБУ мотора, что и приводит к сбоям. Чтобы восстановить питание двигателя горючим и устранить неполадки, приходится заменять компонент, поскольку чистка считается малоэффективным способом.

ddcar.ru

Лямбда-зонд – блюститель экологических норм

К современным транспортным средствам предъявляются достаточно жесткие требования по содержанию вредных веществ в отработавших газах. Необходимая чистота выхлопа обеспечивается сразу несколькими системами автомобиля, строящими свою работу на основании показаний множества датчиков. Но все же основная ответственность по «обезвреживанию» выхлопных газов ложится на плечи каталитического нейтрализатора, встраиваемого в систему выпуска. Катализатор в силу особенностей происходящих внутри него химических процессов является очень чувствительным элементом, которому на вход должен подаваться поток со строго определенным составом компонентов. Чтобы его обеспечить, необходимо добиться наиболее полного сгорания поступающей в цилиндры двигателя рабочей смеси, что возможно только при соотношении воздух/топливо соответственно 14.7:1. При такой пропорции смесь считается идеальной, а показатель λ=1 (отношение реального количества воздуха к необходимому). Бедной рабочей смеси (избыток кислорода) соответствует λ>1, богатой (перенасыщение топливом) – λ

avtonam.ru


Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)
Загрузка...