Фазированный или попарно параллельный впрыск


Попарно-параллельный впрыск против фазированного — Лада 2113, 1.6 л., 2007 года на DRIVE2

Всем привет моим читателям и гостям.

Солнышко с каждым днём светит всё ярче, на улице становиться всё теплее, птички поют, в гаражах потопы, не проехать. На дорогах разбитый асвальт, как всегда бывает весной в Ижевске. Уже совсем скоро можно будет переобуваться на красивые летние катки, но пока ждём, еще рано!

8 марта был отличный весенний день, настроение отличное, на дороге сухой асвальт. Не упустил момент и провёл экcперимент на секретном полигоне. Ровная прямая на 400 метров, машин на дороге мало, поэтому легко сделал 4 ускорения до 130 км/ч.

Задача эксперимента: выяснить на каком типе впрыска: попарно-параллельном или фазированном машина быстрее всего ускоряется при 100% выжатом Вин Дросселе.

Сделал вначале два ускорения на фазированном впрыске, затем отключил датчик фаз и сделал два ускорения на попарно-параллельном впрыске. Датчик фаз отключается очень просто — снимаем фишку с него и машина тут же переходит с фазированного впрыска на попарно-параллельный.

Проводил ускорения следующим образом. Трогался на 1й, чуть разгонялся, включал 3ю и затем сразу же Вин Дросселя в пол. Разгонялся до 130 км/ч. Во время ускорения снимал лог с помощью программы Atomic logger.

Дома, в спокойной обстановке стал анализировать логи разгонов и получил следующие результаты:

Фазированный впрыск:1) Набор скорости от 37 км/ч до 120 км/ч за 12,6 сек

2) Набор скорости от 36 км/ч до 120 км/ч за 13,14 сек

Попарно-параллельный впрыск:1) Набор скорости от 36 км/ч до 121 км/ч за 13,14 сек

2) Набор скорости от 37 км/ч до 121 км/ч за 12,96

Проводил эксперимент со своей лучшей фазой впрыска в открытый клапан. Как видно по результатам, попарно-параллельный впрыск нисколько не уступает фазированному. Кто не верит, могу прислать логи разгона, но я не вижу смысла доказывать что-то кому-то, я просто провёл эксперимент а вы уже сами решайте. Пару слов я всё же скажу.

Фазированный впрыск подаёт полную порцию топлива в закрытый либо открытый впускной клапан. Попарно-паралельный делит полную порцию топлива на пополам и еще к каждой порции прибавляет небольшую добавку (которая также задаётся в прошивке). Затем каждую такую порцию подаёт вначале на открытый клапан, затем на закрытый. На ускорении и на больших оборотах мотора в этом эксперименте не видно разницы между двумя типами впрыска. На попарно-параллельном впрыске во время двух ускорений я слышал детонацию, на фазированном впрыске такого я не заметил. Думаю на маленьких скоростях и оборотах фазированный впрыск будет лучше, он будет меньше расходовать бензина, форсунки будут открываться в два раза реже. Но всё равно, разницы практически не видно. Поэтому у кого мотор без датчика фаз, не переживайте, вы не проиграете в разгоне против фазированного впрыска.

Схема работы 3х типов впрыска

А на старых автомобилях года так 2002 например, впрыск вообще одновременный! На каждые 360гр коленвала все 4 форсунки брызгают. На таком типе впрыска мне приходилось настраивать моторы, я вам скажу что они тоже нормально так едут, если постараться их настроить!

Всем удачи в настройке и чиповке моторов!

Цена вопроса: 0 ₽ Пробег: 123000 км

Page 2

Всем привет моим читателям и гостям.

Солнышко с каждым днём светит всё ярче, на улице становиться всё теплее, птички поют, в гаражах потопы, не проехать. На дорогах разбитый асвальт, как всегда бывает весной в Ижевске. Уже совсем скоро можно будет переобуваться на красивые летние катки, но пока ждём, еще рано!

8 марта был отличный весенний день, настроение отличное, на дороге сухой асвальт. Не упустил момент и провёл экcперимент на секретном полигоне. Ровная прямая на 400 метров, машин на дороге мало, поэтому легко сделал 4 ускорения до 130 км/ч.

Задача эксперимента: выяснить на каком типе впрыска: попарно-параллельном или фазированном машина быстрее всего ускоряется при 100% выжатом Вин Дросселе.

Сделал вначале два ускорения на фазированном впрыске, затем отключил датчик фаз и сделал два ускорения на попарно-параллельном впрыске. Датчик фаз отключается очень просто — снимаем фишку с него и машина тут же переходит с фазированного впрыска на попарно-параллельный.

Проводил ускорения следующим образом. Трогался на 1й, чуть разгонялся, включал 3ю и затем сразу же Вин Дросселя в пол. Разгонялся до 130 км/ч. Во время ускорения снимал лог с помощью программы Atomic logger.

Дома, в спокойной обстановке стал анализировать логи разгонов и получил следующие результаты:

Фазированный впрыск:1) Набор скорости от 37 км/ч до 120 км/ч за 12,6 сек

2) Набор скорости от 36 км/ч до 120 км/ч за 13,14 сек

Попарно-параллельный впрыск:1) Набор скорости от 36 км/ч до 121 км/ч за 13,14 сек

2) Набор скорости от 37 км/ч до 121 км/ч за 12,96

Проводил эксперимент со своей лучшей фазой впрыска в открытый клапан. Как видно по результатам, попарно-параллельный впрыск нисколько не уступает фазированному. Кто не верит, могу прислать логи разгона, но я не вижу смысла доказывать что-то кому-то, я просто провёл эксперимент а вы уже сами решайте. Пару слов я всё же скажу.

Фазированный впрыск подаёт полную порцию топлива в закрытый либо открытый впускной клапан. Попарно-паралельный делит полную порцию топлива на пополам и еще к каждой порции прибавляет небольшую добавку (которая также задаётся в прошивке). Затем каждую такую порцию подаёт вначале на открытый клапан, затем на закрытый. На ускорении и на больших оборотах мотора в этом эксперименте не видно разницы между двумя типами впрыска. На попарно-параллельном впрыске во время двух ускорений я слышал детонацию, на фазированном впрыске такого я не заметил. Думаю на маленьких скоростях и оборотах фазированный впрыск будет лучше, он будет меньше расходовать бензина, форсунки будут открываться в два раза реже. Но всё равно, разницы практически не видно. Поэтому у кого мотор без датчика фаз, не переживайте, вы не проиграете в разгоне против фазированного впрыска.

Схема работы 3х типов впрыска

А на старых автомобилях года так 2002 например, впрыск вообще одновременный! На каждые 360гр коленвала все 4 форсунки брызгают. На таком типе впрыска мне приходилось настраивать моторы, я вам скажу что они тоже нормально так едут, если постараться их настроить!

Всем удачи в настройке и чиповке моторов!

Цена вопроса: 0 ₽ Пробег: 123000 км

Тонкости настройки форсированных двигателей работающих на современных ЭБУ. — «Тюнинг» на DRIVE2

Следующий аспект, который необходимо обсудить, это влияние фазы топливоподачи на эффективные показатели двигателя с искровым зажиганием.

Современные ЭБУ позволяют настраивать не только гоночные автомобили, но и открывают новые возможности при установке на обычные машины, и при этом не потеряв функционала всех основных бортовых систем

Распределённый впрыск, или многоточечный впрыск (Multi Point injection, MPi) — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе вблизи впускного клапана. В то же время различают несколько типов распределённого впрыска:

Одновременный (Simultaneous, Batch Fire Injection) — все форсунки открываются одновременно.

Попарно-параллельный (Bank Fire Injection) — форсунки открываются парами, причём одна форсунка открывается непосредственно перед тактом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке датчика положения распределительного вала (так называемой фазы).

Фазированный впрыск (Sequential Injection) — каждая форсунка управляется отдельно и открывается непосредственно перед тактом впуска.

Непосредственный впрыск (Direc Injection, DI) — впрыск топлива происходит прямо в камеру сгорания.

Одновременный или групповой тип распределенного впрыска (Simultaneous or Bank Fire Injection)

При групповом типе распределенного впрыска все инжектора впрыскивают топливо одновременно, один раз в течение одного оборота коленчатого вала, то есть два раза в течение полного рабочего цикла в четырехтактном двигателе (см. картинку выше). Таким образом, при групповом механизме организации подачи топлива, форсунки иногда впрыскивают бензин в уже закрытый клапан, и все же данный тип имеет свои преимущества в простоте.

Сверх того, тот факт, что впрыск топлива происходит дважды, это в свою очередь позволяет использовать инжектора меньшего размера, что уменьшает стоимость. Кроме того, использование форсунок меньшего размера имеет дополнительное преимущество при работе двигателя на не высоких частотах вращения, при малой нагрузке, и особенно на холостом ходу т.к. это позволяет увеличить длительность открытия форсунок и пропустить второй импульс т.е. впрыскивать только один раз за каждых два оборота коленчатого вала. Это в свою очередь улучшит точность измерения длительности открытия форсунок, потому что большинство инжекторов становятся неустойчивыми при длине импульса меньше 2 миллисекунд.

Видео Sequential Injection vs Batch Fire Injection

Фазированный впрыск (Sequential Injection)

Большинство современных автомобилей используют фазированную систему распределенного впрыска, которая позволяет осуществлять подачу топлива синхронно с открытием впускных клапанов индивидуально для каждого цилиндра.

Обычно, на серийных автомобилях фаза впрыскивания начинается около 40-50 градусах до начала открытия впускного клапана. Чтобы обойти трудности, вызванные использованием больших форсунок, распыляющих именно тогда, когда впускной клапан открыт, достаточно часто производители устанавливают малого размера инжектора. Поэтому в режиме круиз и малых нагрузках, форсунки заканчивают впрыск топлива еще до момента закрытия впускных клапанов. Это снижает вредные выбросы, уменьшает расход и улучшает реакцию на педаль газа.

Однако, с увеличение частоты вращения и нагрузки, сток форсунок уже не достаточно для впрыскивания топлива в столь короткий промежуток времени, пока впускной клапан открыт (в среднем около 250 градусах). Поэтому, для обеспечения подачи необходимого количества топлива, время открытия форсунок значительно увеличивается и момент впрыскивания происходит даже после закрытия впускных клапанов, этот заряд используется на следующем такте впуска. Становится очевидно, что с увеличением нагрузки и частоты вращения, уже нет разницы, в таком случае, между фазированным и одновременным типом распределенного впрыска. Поэтому и мощность, на серийных двигателях, примерно одинаковая при сравнении обоих систем. На самом деле, только на малых нагрузках и скоростях вращения, фазированный впрыск имеет преимущество в серийных двигателях.

При настройках форсированных двигателей не все уделяют достойное внимание фазам топливоподачи. Более того, даже профессионалы, не всегда могут сказать, как повлияет настройка подачи топлива на эффективные показатели конкретного двигателя. Со своей стороны могу сказать одно – эффект положительный, в пределах 4-5% от максимальных показателей, нормальное явление на любом двигателе.

Конечно, кто-то может сказать, что настраивал фазы топливоподачи и результат был практически незаметный. И такое бывает, но всему есть объяснение. Результат будет положительным только в случае правильно подготовленной и установленной самой системы впрыска, и не важно, на атмосферном гоночном двигателе или высокофорсированном с нагнетателем.

Ниже привожу реальный пример на 2.0 литра атмосферном гоночном двигателе Форд:

И график мощности в л.с.

Я не могу точно сказать, какой будет результат в улучшении характеристик, все зависит от того, что уже сделано и установлено на конкретном двигателе, но вот, что надо сделать, для получения максимально возможного результат я постараюсь рассказать.

При постройке гоночного или высокофорсированного двигателя нас особо не волнуют работа двигателя на малых нагрузках, скоростях вращения и вредные выбросы (эмиссия). Поэтому, первое, что необходимо сделать, так это установить достаточно большие форсунки, которые способны в короткий промежуток времени впрыснуть необходимое количество топлива при максимальной мощности. Обычно, когда гоночный двигатель работает на фазированной системе впрыска, фазы настраиваются таким образом, что бы момент окончания впрыска приходился до закрытия впускного клапана.

Некоторые полагают, что длительность открытия форсунок не должна превышать период времени пока впускной клапан открыт. К примеру, если впускной распредвал имеет полную фазу 290 градусов, то длительность открытия форсунок (время впрыскивания топлива) будет ограничено 290 градусами поворота коленчатого вала. Для низких частот вращения этo правда, но как только мы приближаемся к оборотам двигателя, где максимальная мощность, в таком случае лучше всего результат будет при длительности открытия форсунок в пределах 430-500 градусов (или, если 720 градусов полный рабочий цикл, то оптимальным duty cycle форсунок будет 60-70%). Таким образом, если у нас установлен распределительный вал с полной фазой 290 градусов, момент открытия форсунок будет происходить 140-210 градусов до начала открытия впускного клапана.

Для того что бы двигатель работал с использованием всех преимуществ системы фазированного распределенного впрыска, используют второй ряд форсунок. В таком случае, основной ряд форсунок, который установлен в близости впускных клапанов, используется для холостого хода, малых нагрузок и обычно имеют размер до трех раз меньше, чем второй ряд инжекторов.

В зависимости от мощности и возможностей ЭБУ на котором будет производится настройка есть несколько техник, но это уже не так и важно, я приведу основное правило которое не плохо работает. Фазы основных, встроенных форсунок можно настроить по принципу, как и на сток т.е., скажем, установить момент открытия форсунок где-то 40 градусов до начала открытия впускных клапанов. При впрыскивание топлива на закрытый впускной клапан, большая часть мгновенно испаряется и это образовавшееся облако паров топливно-воздушной смеси, с отличной гомогенностью, как раз будет готово к моменту открытия впускного клапана, и при поступлении в камеру сгорания улучшит процесс сгорания.

А вот при настройке фаз второго ряда форсунок, необходимо выбрать за отправную точку момент закрытия форсунок, так будет намного проще и удобнее (во всяком случае, для меня это так). Сам момент или фазу конца впрыска топлива можно узнать только при настройке на динамометрическом стенде и постоянно следить за изменяющимся при этом значении лямбда (или AFR, кому как удобно). Но обычно, это близко к моменту закрытия впускного клапана. Фаза особо не зависит от нагрузки, поэтому достаточно сделать 2D таблицу фаз от частоты вращения коленчатого вала.

Также стоит упомянуть о дополнительном преимуществе использование второго ряда форсунок, т.к. они включаются при уже достаточно мощном воздушном потоке, а располагают их обычно как можно дальше от впускных клапанов, в таком случае, из-за хорошего смесеобразования и эффекта охлаждения воздушного заряда впрыскиваемым топливом форсунок второго ряда, происходит увеличение плотности и как следствие увеличивается наполняемость цилиндров – больше кислорода, больше крутящего момента.

Как я уже упоминал, настройка фаз топливоподачи имеет смысл только при условии, что в режиме максимальной мощности форсунки будут загружены в пределах 60%-70%. Если инжектора будут слишком большие, и скажем, максимальная загрузка составит всего 40-45%, результат будет отрицательный из-за плохого распыла, смесеобразования и естественно ухудшенного охлаждения при испарении. Особенно это заметно на двигателях с нагнетателем. Также, если вы планируете получать максимально возможный результат от использования настройки фаз топливоподачи – помните, что при загрузке инжекторов 75-80% и выше, не фига ничего не получится.

С теорией на сегодня закончим и пора приступать к конкретным замерам и посмотреть как влияет фаза топливоподачи на лямбду и мощностные характеристики двигателя.

Но, для лучшего понимания, необходимо пояснить кое-что. В программном обеспечении ЭБУ немного по-другому используется нумерация градусов коленчатого вала, не как обычно в направлении слева направо от верхней мертвой точки на такте сжатия, а наоборот справа налево, т.е. цифры указывают на то, сколько градусов до, а не после. Поэтому я специально подготовил такую диаграмму.

Для начала предлагаю посмотреть на влияние фазы топливоподачи на состав топливно-воздушной смеси (лямбда в данном случае) при работе двигателя на холостом ходу.

В программе ЭБУ Link G+ есть возможность выбрать тип распределенного впрыска и позицию, по которой будет считаться момент впрыскивания. В данном, а также в последующих примерах, за отсчет берется момент окончания впрыска или закрытия форсунок.

Очень отчетливо видно, что при впрыскивании топлива в открытый впускной клапан ( 250 градусов) смесь становится немного богаче (все адаптации отключены), но в тоже время, при подачи топлива на уже закрытый клапан (400* и больше) лямбда наиболее стабильна.

Далее предлагаю посмотреть на эксперимент с более современным двигателем, в котором имеется и классическая система распределенного впрыска и непосредственно в цилиндры (Direct Injection) – Subaru BRZ

Для начала отключим непосредственный впрыск и будем смотреть на результат, при изменении фаз топливоподачи только вторых форсунок, установленных в впускных каналах двигателя (Fuel timing secondary)

Замеры сделаны при частоте вращения 3000 об/мин и частичной загрузке в пределах 60 кПа или 26% открытого дросселя. В левом верхнем углу показан момент, снятый с роликов динамометрического стенда — это “попугаи”, которые показывают не реальный момент с колес, а свои значения на тормозе. В данном случае это удобнее т.к. эти значения на порядок выше и проще увидеть изменения.

И так, 120 градусов момент окончания впрыскивания топлива, приходится уже после закрытия впускного клапана, но начало впрыска было еще, когда клапана открыты. Результат – 416 Нм.

203 градуса – момент окончания. Длительность открытия форсунок пришлась на период открытия впускных клапанов. Результат – 428 Нм, на 2.8% выше показатель

450 градусов. Время впрыскивания топливо полностью пришлось в закрытый впускной клапан. Результат 409.2 Нм, что на 4.8% хуже, чем в оптимальном варианте.

Я думаю на сегодня достаточно, тем более настройка фаз топливоподачи в двигателях с непосредственным впрыском, не просто очень важна т.к. эти значения в изменениях крутящего момента уже не в 5% выражаются, а намного выше, да и настройка важна во всех режимах (3D таблицы – обороты и загрузка). Но там просто и легко можно взорвать двигатель

С уважениемBarik

Page 2

Следующий аспект, который необходимо обсудить, это влияние фазы топливоподачи на эффективные показатели двигателя с искровым зажиганием.

Современные ЭБУ позволяют настраивать не только гоночные автомобили, но и открывают новые возможности при установке на обычные машины, и при этом не потеряв функционала всех основных бортовых систем

Распределённый впрыск, или многоточечный впрыск (Multi Point injection, MPi) — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе вблизи впускного клапана. В то же время различают несколько типов распределённого впрыска:

Одновременный (Simultaneous, Batch Fire Injection) — все форсунки открываются одновременно.

Попарно-параллельный (Bank Fire Injection) — форсунки открываются парами, причём одна форсунка открывается непосредственно перед тактом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке датчика положения распределительного вала (так называемой фазы).

Фазированный впрыск (Sequential Injection) — каждая форсунка управляется отдельно и открывается непосредственно перед тактом впуска.

Непосредственный впрыск (Direc Injection, DI) — впрыск топлива происходит прямо в камеру сгорания.

Одновременный или групповой тип распределенного впрыска (Simultaneous or Bank Fire Injection)

При групповом типе распределенного впрыска все инжектора впрыскивают топливо одновременно, один раз в течение одного оборота коленчатого вала, то есть два раза в течение полного рабочего цикла в четырехтактном двигателе (см. картинку выше). Таким образом, при групповом механизме организации подачи топлива, форсунки иногда впрыскивают бензин в уже закрытый клапан, и все же данный тип имеет свои преимущества в простоте.

Сверх того, тот факт, что впрыск топлива происходит дважды, это в свою очередь позволяет использовать инжектора меньшего размера, что уменьшает стоимость. Кроме того, использование форсунок меньшего размера имеет дополнительное преимущество при работе двигателя на не высоких частотах вращения, при малой нагрузке, и особенно на холостом ходу т.к. это позволяет увеличить длительность открытия форсунок и пропустить второй импульс т.е. впрыскивать только один раз за каждых два оборота коленчатого вала. Это в свою очередь улучшит точность измерения длительности открытия форсунок, потому что большинство инжекторов становятся неустойчивыми при длине импульса меньше 2 миллисекунд.

Видео Sequential Injection vs Batch Fire Injection

Фазированный впрыск (Sequential Injection)

Большинство современных автомобилей используют фазированную систему распределенного впрыска, которая позволяет осуществлять подачу топлива синхронно с открытием впускных клапанов индивидуально для каждого цилиндра.

Обычно, на серийных автомобилях фаза впрыскивания начинается около 40-50 градусах до начала открытия впускного клапана. Чтобы обойти трудности, вызванные использованием больших форсунок, распыляющих именно тогда, когда впускной клапан открыт, достаточно часто производители устанавливают малого размера инжектора. Поэтому в режиме круиз и малых нагрузках, форсунки заканчивают впрыск топлива еще до момента закрытия впускных клапанов. Это снижает вредные выбросы, уменьшает расход и улучшает реакцию на педаль газа.

Однако, с увеличение частоты вращения и нагрузки, сток форсунок уже не достаточно для впрыскивания топлива в столь короткий промежуток времени, пока впускной клапан открыт (в среднем около 250 градусах). Поэтому, для обеспечения подачи необходимого количества топлива, время открытия форсунок значительно увеличивается и момент впрыскивания происходит даже после закрытия впускных клапанов, этот заряд используется на следующем такте впуска. Становится очевидно, что с увеличением нагрузки и частоты вращения, уже нет разницы, в таком случае, между фазированным и одновременным типом распределенного впрыска. Поэтому и мощность, на серийных двигателях, примерно одинаковая при сравнении обоих систем. На самом деле, только на малых нагрузках и скоростях вращения, фазированный впрыск имеет преимущество в серийных двигателях.

При настройках форсированных двигателей не все уделяют достойное внимание фазам топливоподачи. Более того, даже профессионалы, не всегда могут сказать, как повлияет настройка подачи топлива на эффективные показатели конкретного двигателя. Со своей стороны могу сказать одно – эффект положительный, в пределах 4-5% от максимальных показателей, нормальное явление на любом двигателе.

Конечно, кто-то может сказать, что настраивал фазы топливоподачи и результат был практически незаметный. И такое бывает, но всему есть объяснение. Результат будет положительным только в случае правильно подготовленной и установленной самой системы впрыска, и не важно, на атмосферном гоночном двигателе или высокофорсированном с нагнетателем.

Ниже привожу реальный пример на 2.0 литра атмосферном гоночном двигателе Форд:

И график мощности в л.с.

Я не могу точно сказать, какой будет результат в улучшении характеристик, все зависит от того, что уже сделано и установлено на конкретном двигателе, но вот, что надо сделать, для получения максимально возможного результат я постараюсь рассказать.

При постройке гоночного или высокофорсированного двигателя нас особо не волнуют работа двигателя на малых нагрузках, скоростях вращения и вредные выбросы (эмиссия). Поэтому, первое, что необходимо сделать, так это установить достаточно большие форсунки, которые способны в короткий промежуток времени впрыснуть необходимое количество топлива при максимальной мощности. Обычно, когда гоночный двигатель работает на фазированной системе впрыска, фазы настраиваются таким образом, что бы момент окончания впрыска приходился до закрытия впускного клапана.

Некоторые полагают, что длительность открытия форсунок не должна превышать период времени пока впускной клапан открыт. К примеру, если впускной распредвал имеет полную фазу 290 градусов, то длительность открытия форсунок (время впрыскивания топлива) будет ограничено 290 градусами поворота коленчатого вала. Для низких частот вращения этo правда, но как только мы приближаемся к оборотам двигателя, где максимальная мощность, в таком случае лучше всего результат будет при длительности открытия форсунок в пределах 430-500 градусов (или, если 720 градусов полный рабочий цикл, то оптимальным duty cycle форсунок будет 60-70%). Таким образом, если у нас установлен распределительный вал с полной фазой 290 градусов, момент открытия форсунок будет происходить 140-210 градусов до начала открытия впускного клапана.

Для того что бы двигатель работал с использованием всех преимуществ системы фазированного распределенного впрыска, используют второй ряд форсунок. В таком случае, основной ряд форсунок, который установлен в близости впускных клапанов, используется для холостого хода, малых нагрузок и обычно имеют размер до трех раз меньше, чем второй ряд инжекторов.

В зависимости от мощности и возможностей ЭБУ на котором будет производится настройка есть несколько техник, но это уже не так и важно, я приведу основное правило которое не плохо работает. Фазы основных, встроенных форсунок можно настроить по принципу, как и на сток т.е., скажем, установить момент открытия форсунок где-то 40 градусов до начала открытия впускных клапанов. При впрыскивание топлива на закрытый впускной клапан, большая часть мгновенно испаряется и это образовавшееся облако паров топливно-воздушной смеси, с отличной гомогенностью, как раз будет готово к моменту открытия впускного клапана, и при поступлении в камеру сгорания улучшит процесс сгорания.

А вот при настройке фаз второго ряда форсунок, необходимо выбрать за отправную точку момент закрытия форсунок, так будет намного проще и удобнее (во всяком случае, для меня это так). Сам момент или фазу конца впрыска топлива можно узнать только при настройке на динамометрическом стенде и постоянно следить за изменяющимся при этом значении лямбда (или AFR, кому как удобно). Но обычно, это близко к моменту закрытия впускного клапана. Фаза особо не зависит от нагрузки, поэтому достаточно сделать 2D таблицу фаз от частоты вращения коленчатого вала.

Также стоит упомянуть о дополнительном преимуществе использование второго ряда форсунок, т.к. они включаются при уже достаточно мощном воздушном потоке, а располагают их обычно как можно дальше от впускных клапанов, в таком случае, из-за хорошего смесеобразования и эффекта охлаждения воздушного заряда впрыскиваемым топливом форсунок второго ряда, происходит увеличение плотности и как следствие увеличивается наполняемость цилиндров – больше кислорода, больше крутящего момента.

Как я уже упоминал, настройка фаз топливоподачи имеет смысл только при условии, что в режиме максимальной мощности форсунки будут загружены в пределах 60%-70%. Если инжектора будут слишком большие, и скажем, максимальная загрузка составит всего 40-45%, результат будет отрицательный из-за плохого распыла, смесеобразования и естественно ухудшенного охлаждения при испарении. Особенно это заметно на двигателях с нагнетателем. Также, если вы планируете получать максимально возможный результат от использования настройки фаз топливоподачи – помните, что при загрузке инжекторов 75-80% и выше, не фига ничего не получится.

С теорией на сегодня закончим и пора приступать к конкретным замерам и посмотреть как влияет фаза топливоподачи на лямбду и мощностные характеристики двигателя.

Но, для лучшего понимания, необходимо пояснить кое-что. В программном обеспечении ЭБУ немного по-другому используется нумерация градусов коленчатого вала, не как обычно в направлении слева направо от верхней мертвой точки на такте сжатия, а наоборот справа налево, т.е. цифры указывают на то, сколько градусов до, а не после. Поэтому я специально подготовил такую диаграмму.

Для начала предлагаю посмотреть на влияние фазы топливоподачи на состав топливно-воздушной смеси (лямбда в данном случае) при работе двигателя на холостом ходу.

В программе ЭБУ Link G+ есть возможность выбрать тип распределенного впрыска и позицию, по которой будет считаться момент впрыскивания. В данном, а также в последующих примерах, за отсчет берется момент окончания впрыска или закрытия форсунок.

Очень отчетливо видно, что при впрыскивании топлива в открытый впускной клапан ( 250 градусов) смесь становится немного богаче (все адаптации отключены), но в тоже время, при подачи топлива на уже закрытый клапан (400* и больше) лямбда наиболее стабильна.

Далее предлагаю посмотреть на эксперимент с более современным двигателем, в котором имеется и классическая система распределенного впрыска и непосредственно в цилиндры (Direct Injection) – Subaru BRZ

Для начала отключим непосредственный впрыск и будем смотреть на результат, при изменении фаз топливоподачи только вторых форсунок, установленных в впускных каналах двигателя (Fuel timing secondary)

Замеры сделаны при частоте вращения 3000 об/мин и частичной загрузке в пределах 60 кПа или 26% открытого дросселя. В левом верхнем углу показан момент, снятый с роликов динамометрического стенда — это “попугаи”, которые показывают не реальный момент с колес, а свои значения на тормозе. В данном случае это удобнее т.к. эти значения на порядок выше и проще увидеть изменения.

И так, 120 градусов момент окончания впрыскивания топлива, приходится уже после закрытия впускного клапана, но начало впрыска было еще, когда клапана открыты. Результат – 416 Нм.

203 градуса – момент окончания. Длительность открытия форсунок пришлась на период открытия впускных клапанов. Результат – 428 Нм, на 2.8% выше показатель

450 градусов. Время впрыскивания топливо полностью пришлось в закрытый впускной клапан. Результат 409.2 Нм, что на 4.8% хуже, чем в оптимальном варианте.

Я думаю на сегодня достаточно, тем более настройка фаз топливоподачи в двигателях с непосредственным впрыском, не просто очень важна т.к. эти значения в изменениях крутящего момента уже не в 5% выражаются, а намного выше, да и настройка важна во всех режимах (3D таблицы – обороты и загрузка). Но там просто и легко можно взорвать двигатель

С уважениемBarik

Фазированный впрыск топлива.

Дальнейшего повышения точности дозирования впрыскиваемого топлива при малых длительностях впрыска путём уменьшения негативного влияния инерционности электромагнитных топливных форсунок, каждую форсунку стали обслуживать собственным выходным транзистором блока управления двигателем. Такая схема впрыска называется фазированным впрыском или последовательным впрыском топлива. За счёт уменьшения частоты срабатывания форсунки по сравнению с параллельным и попарно-параллельным впрыском в два раза, потребовалось уже более продолжительное открытие форсунки для обеспечения подачи того же количества топлива.

То есть, схема управления форсунками была модернизирована так, что вместо двух коротких впрысков топлива осуществляется один более продолжительный впрыск. Таким образом, замена параллельной схемы впрыска топлива на фазированную позволила заметно повысить точность дозирования впрыскиваемого топлива при малых длительностях впрыска.

  Осциллограммы напряжения сигналов системы управления 4-х цилиндрового 4-х тактного  двигателя, осуществляющей фазированный впрыск топлива, демонстрирующие схему впрыска топлива данной системы.

  1. Осциллограмма напряжения управляющих импульсов топливной  форсункой 1-го цилиндра.
  2. Осциллограмма напряжения управляющих импульсов топливной  форсункой 2-го цилиндра.
  3. Осциллограмма напряжения управляющих импульсов топливной  форсункой 3-го цилиндра.
  4. Осциллограмма напряжения управляющих импульсов топливной  форсункой 4-го цилиндра.
  5. Осциллограмма напряжения выходного сигнала датчика положения / частоты вращения коленчатого вала. За один полный оборот коленвала датчик генерирует 58 импульсов и один пропуск, продолжительность которого соответствует продолжительности двух импульсов. Соответственно, за один полный цикл работы 4-х тактного двигателя (за два оборота коленвала) датчик генерирует такие пропуски дважды.
  6. Осциллограмма напряжения выходного сигнала датчика положения распределительного вала (датчика фаз). За два полных оборота коленвала датчик генерирует один импульс.
  7. Импульс синхронизации с моментом зажигания в первом цилиндре. 

     Здесь, впрыск топлива осуществляется тогда, когда обслуживаемый данной форсункой цилиндр находится на такте выпуска отработавших газов, то есть, незадолго до такта впуска. За два полных оборота коленчатого вала двигателя соответствующих одному полному циклу работы четырёхтактного двигателя, каждая форсунка впрыскивает топливо только один раз. То есть, по сравнению с параллельным и попарно-параллельным впрыском, здесь частота срабатывания форсунки уменьшена в два раза. За счёт этого, для обеспечения подачи заданного количества топлива потребовалось более продолжительное открытие форсунки, а за счёт увеличения продолжительности открытого состояния форсунки уменьшилось негативное влияние инерционности электромагнитных топливных форсунок на точность дозирования топлива. Таким образом, замена попарно-параллельной схемы впрыска топлива на фазированную позволила ещё больше повысить точность дозирования впрыскиваемого топлива при малых длительностях впрыска.

    Для реализации фазированной схемы впрыска топлива потребовались заметные доработки системы управления двигателем, обеспечивающие привязку алгоритма управления форсунками к фазам рабочего цикла цилиндров. По этому, двигатели, оборудованные фазированным впрыском топлива, дополнительно оснащены датчиком положения распределительного вала (датчиком фаз). Кроме того, блок управления такого двигателя потребовалось дооснастить ещё несколькими силовыми транзисторами, для управления каждой форсункой индивидуально. Кроме внесения изменений в блок управления двигателем, потребовалось применение форсунок с более тонким распылом топлива, так как уменьшилась продолжительность процесса испарения топлива и смешивания его с воздухом. На некоторых двигателях, дополнительно, это позволило использовать режим работы при более бедной смеси (дополнительно потребовалось изменение конструкции впускного коллектора и применение заслонок завихрителей, для формирования вертикальных потоков воздуха в цилиндре).

   Следует заметить, что в момент пуска двигателя блок управления двигателем переключается на параллельную схему впрыска топлива, то есть, включает и выключает все топливные форсунки одновременно до тех пор, пока не распознает сигнал от датчика положения распределительного вала. Дополнительно применяется асинхронный режим впрыска. В момент, когда водитель очень резко нажимает на педаль акселератора, некоторые блоки управления могут осуществлять впрыскивание дополнительного количества топлива несколькими малыми порциями в цилиндры, которые в данный момент находятся перед или вначале такта впуска.

Осциллограммы напряжения сигнала управления форсункой и сигнала от датчика положения дроссельной заслонки системы фазированного впрыска топлива в момент резкой перегазовки.

4  Осциллограмма напряжения выходного сигнала датчика положения дроссельной заслонки.

6  Осциллограмма напряжения управляющих импульсов топливной форсункой одного из цилиндров.

    Как видно из приведённым выше осциллограммам, на переходных режимах работы двигателя, в данном примере в момент резкого открытия дроссельной заслонки, система фазированного впрыска топлива может осуществлять дополнительные циклы впрыска топлива, дополнительно обогащая таким образом состав приготовляемой топливовоздушной смеси. Благодаря этому снижается вероятность возникновения пропусков воспламенения топливовоздушной смеси в цилиндрах при работе двигателя на переходных режимах.

    В системах точечного впрыска топлива подавляющего большинства двигателей современных автомобилей реализован именно фазированный впрыск топлива.

Совместимость ЭБУ разных типов

Много вопросов у начинающих вызывает проблема совместимости блоков ЭБУ разных типов и прошивок к ним. А ведь это базовые знания, без которых начинать чип тюнинг и диагностику просто нецелесообразно. Поэтому постараюсь освятить этот вопрос подробнее. Сначала – о системах, снятых с производства, Январь 4.х.

Аппаратная реализация систем Январь 4 несовместима с Январь 4.1, прошивки для данных блоков несовместимы между собой. Для систем Январь 4 предназначено ПО серии N (последняя реализация – N14), более позднее ПО предназначено для Январь 4.1. Более подробно прочитать об этом можно было «практически в первоисточнике» – сайте Дмитрия Борисовича Дударя. К сожалению, в настоящее время этот сайт недоступен. 

Новая, дополненная «История в лицах» находится ЗДЕСЬ. Эта страничка поможет ВАМ идентифицировать Вашу систему впрыска, что бы знать, к чему готовиться и с чем иметь дело. 

В настоящее время (октябрь 2003) серийно выпускаются и устанавливаются на автомобили пять условных групп ЭБУ – «Январь 5.1.х», «Bosch M1.5.4», «Bosch MP7.0», «Bosch M7.9.7» и «VS 5.1». 

Bosch M7.9.7 в настоящее время только пошел в серию с 09.2003, имеет собственный разъем, несовместимый с выпускаемыми ранее. ЭБУ предназначено для построения ЭСУД под нормы токсичности ЕВРО‐2 и ЕВРО‐3.

Принципиальные отличия:     1. Уменьшены габаритные размеры корпуса и вес.    2. Новые, более современные разъемы с улучшенной надежностью соединений.    3. Контроллеры имеют встроенные коммутаторы, следовательно, вместо модулей зажигания будут использованы катушки зажигания, которые увеличат надежность ЭСУД в целом. 

   Нет ни программной, ни аппаратной совместимости ни с одним из блоков, выпускаемых ранее.

Bosch MP7.0 выпускается, в основном, для внешнего рынка. Нет ни программной, ни аппаратной совместимости с другими блоками, однако, имеет стандартный 55‐ти контактный разъем и способен работать с перекроссировкой на других типах ЭСУД.

Bosch M1.5.4, Январь 5.1 и VS 5.1 имеют разную аппаратную реализацию, программно несовместимы между собой, но могут взаимозаменять друг друга.  Различаются по три типа аппаратной реализации этих блоков:

- одновременный впрыск - попарно – параллельный впрыск - фазированный впрыск

Каждый тип впрыска комплектуется своим ЭБУ, программным обеспечением и проводкой. Под аппаратной совместимостью подразумевается возможность ЭБУ заменять друг друга.

Одновременный впрыск. 

Bosch M1.5.4 1411020–70 Январь 5.1.1 1411020–71 VS 5.1 1411020–72

Внутри этой группы существует старая модификация блока Bosch M1.5.4 1411020. Он имеет другой тип датчика детонации – резонансный и взаимозаменяем с ЭБУ данной группы только совместно с датчиком детонации. Обычно заменяется этот блок на более современный c новый датчик детонации.

Попарно – параллельный впрыск

Bosch M1.5.4 1411020–60 Январь 5.1 1411020–61 VS 5.1 1411020–62

Эти две системы Евро II, с ДК и адсорбером аппаратно совместимы и могут взаимозаменять друг друга.

Частным случаем здесь является группа ЭСУД для «классики». Отличие от «родительских» ЭСУД, в них не применяется датчик детонации и, соответственно, в самих ЭБУ не установлены элементы каналов ДД.

Bosch M1.5.4 2104–1411020 Январь 5.1.3 1411020–01 VS 5.1 1411020–02

Фазированный впрыск. 

Bosch M1.5.4 1411020–40 Январь 5.1 1411020–41 VS 5.1 1411020–42

Все три ЭБУ данной таблицы – системы Евро II, с ДК, адсорбером и датчиком фазы (или датчиком распредвала) и полностью взаимозаменяемы между собой. 

Внутри этой группы существует ЭСУД под нормы токсичности Россия‐83, без ДК и адсорбера – Январь 5.1.2 1411020–71

Рассмотренные ваше варианты взаимной замены ЭБУ представлены с позиции производителя.

С позиции ПО и тюнинга (чип‐тюнинга) возможности замены несколько шире. Но есть и соответствующие ограничения. Рассмотрим варианты взаимозаменяемости на примере самого распространенного типа – Январь 5.х.х. Взаимозаменяемость ЭБУ «VS» и «Bosch M1.5.4» производится по аналогичному алгоритму.

Все ЭБУ (внутри своего типа) построены на единой платформе и различаются в основном коммутацией форсунок и подогревателя ДК. Так, например:

Январь 5.1   2112–1411020-41 – фазированный впрыск, датчик кислорода Январь 5.1   2111–1411020-61 – попарно – параллельный впрыск, датчик кислорода

Эти две модификации совершенно аппаратно идентичны, различаются только прошивками ПО, это означает, что например записав в 2112–41 блок прошивку от 2111–61, его можно устанавливать вместо 2111–61 и наоборот. Далее: 

Январь 5.1.2 2112 -1411020–71 – фазированный впрыск, без датчика кислорода

Эта модификация отличается отсутствием на базовой плате элементов управления ДК и не может устанавливаться вместо 2112–41 или 2112–61 блоков (вернее, может, но с условием отключения ДК), но 2112–41 или 2111–61 блок будет прекрасно работать вместо 2112–71 с соответствующим ПО (2112–71), с одной оговоркой: жгуты для 2112–1411020-71 разных лет выпуска могут различаться. Вернее, есть «новые» жгуты, у которых в разъеме 1‐я форсунка (контакт 23) соединен с клапаном рециркуляции (контакт 17) далее идет на 1‐ю форсунку. В результате, при включении зажигания 1‐я форсунка постоянно открыта. При замене необходимо проконтролировать эту цепь и если она присутствует, разорвать.

Январь 5.1.1 2111–1411020-71 – одновременный впрыск, без датчика кислорода 

Эта модификация имеет аппаратные различия, хотя народный умелец с паяльником в руках довольно легко сможет, добавив недостающие микросхемы в блок, превратить Январь 5.1.1 (или 5.1.2) в Январь 5.1. В Январь 5.1.1 не хватает пары микросхем, одна из которых драйвер форсунок, вторая работает с адсорбером, клапаном рециркуляции и длиной выпускной трубы. Форсунки в Январь 5.1.1 (как и в любой другой системе одновременного впрыска) управляются через (!) канал нагревателя датчика кислорода. Это означает, что любой блок с поддержкой ДК (2112–41 или 2111–61) с ПО для 5.1.1–71 будет работать на месте 5.1.1–71. С Январь 5.1.2 такой совместимости нет, т.к в этом ЭБУ отсутствуют элементы управления подогревателем ДК, использующемся в одновременном впрыске 5.1.1–71 как драйвер форсунок. 

Естественно, ПО блока должно соответствовать типу впрыска и применяемой проводке.

Практически же на автомобиль можно устанавливать любой блок с соответствующей этому блоку переделкой проводки или ее заменой и соответствующем ПО. Но необходимо помнить один нюанс – ЭБУ отличаются различными драйверами по каналу ДПКВ, у них могут быть различные требования к полярности сигнала данного датчика. Поэтому, если например, Bosch M1.5.4 отказывается заводиться вместо Январь 5.1 – необходимо просто поменять местами провода, подходящие к ДПКВ.

Следует иметь ввиду, что 2112–41 и 2112–71 блоки с одинаковой маркировкой могут иметь аппаратные различия. Отличить их очень просто – новая аппаратная реализация выходит с завода с софтом серии «J» (или новее). Эти варианты блоков отличаются примененной микросхемой драйверов форсунок. В старом блоке стоит SIEMES TLE5216, в новом – MOTOROLA MC33385. Они отличаются (кроме всего прочего) еще и диаграммой считывания драйверной диагностики.  Поэтому на новых блоках со старым софтом или наоборот могут возникать ошибки драйверной диагностики, например, пресловутый обрыв 3‐й форсунки.

Кроме всего прочего, в связи со снятием с производства микросхемы HIP9010 (обработчик канала детонации), с 2006 года в ЭБУ, поставляемые в запчасти устанавливают HIP9011, который отличается процедурой программирования SPI, и, естественно, изменено ПО, которое легко отличить по маркировке ПО – применение литеры А вместо J в названии прошивки. Например A5V05N35. «Старые» прошивки в таких ЭБУ «не видят» детонации и применять их можно только после небольшой программной правки специальной утилитой от SMS – Software.

BOSCH

Внутри группы Bosch M1.5.4 2112–1411020-40 и 2111–1411020-60 полностью одинаковы и взаимозаменяемы, Отличие только в ПО.

А вот ЭБУ для одновременного впрыска (2111–1411020-70) имеет аппаратное различие  в цепи управлением подогревателем (40‐е и 60‐е блоки), который используется как драйвер форсунок в 70‐м блоке установлен диод, удерживающий форсунки в открытом состоянии больше расчетного времени и отсутствуют два стабилитрона. То есть, в этом случае диод нужно удалить и запаять два отсутствующих стабилитрона. Естественно, что это относится только к случаю, когда Bosch – 40(60) устанавливается вместо -70 с соответствующей прошивкой. (Респект Сергею Перетокину, разобравшемуся с данной проблемой и приславшему этот материал и схему.)

VS5.1 

ЭБУ VS5.1 производства «Ителма» функционально является аналогом Январь 5, то есть выполняет те же функции, совместимо по проводке (то есть, например, VS5.1 с прошивкой V5V05N35 можно установить вместо любого Январь 5.1 2112–1411020-41 или вместо Bosch M1.5.4 2112–1411020-40).    

Эти ЭБУ также встречаются с различной аппаратной реализацией. В 2003 г. НПО «Итэлма» полностью модифицировало свой модельный ряд. Но, в отличии от других систем, ПО для «новых» и «старых» блоков полностью несовместимо, то есть «новое» ПО работает только в новом блоке, «старое» – только в старых. Алгоритмы и подход с точки зрения чип‐тюнинга полностью аналогичен Январь 5.х.х

«Новая» модификация VS5.1 1411020–72 (одновременный впрыск) с прошивкой V5V13K03 устанавливается на конвейере ВАЗ с сентября 2003 г. Данное ПО несовместимо с ранними версиями (V5V13I02, V5V13J02).   «Новая» модификация VS5.1 1411020–62 (попарно‐параллельный впрыск) с прошивкой V5V13L25 устанавливается на конвейере ВАЗ с декабря 2003 г. Данное ПО несовместимо с ранними версиями (V5V13K22). 

«Новая» модификация VS5.1 1411020–42 (фазированный впрыск) с прошивкой V5V05M30 устанавливается на конвейере ВАЗ с декабря 2003 г. Данное ПО несовместимо с ранними версиями (V5V05K17, V5V05L19). 

То есть, грубо, существует две группы блоков. Ориентируясь по ID прошивки, указанной на шильдике и/или дате изготовления блока, легко можно понять, что туда «прошивать»  

©SPY. Совместимость этих блоков насколько запутанная, попробуем досконально в этом разобраться. 

На всех контроллерах новой аппаратной реализации управление форсунками выведено на обыкновенные для Евро‐2 (попарно – параллельный и фазированный впрыск) выходы контроллера, то есть 16, 23, 34 и 35.

Это справедливо для контроллеров -42 -62 (-72!) , однако контроллер -72 отличается от -42 и -62 отсутствием ключа, управляющего нагревателем ДК (отмечены на фото цифрой «2») и наличием четырёх перемычек, установленных в места отмеченные цифрой «1», то есть, выходы на форсунки у него есть кроме тех, что описаны выше, ещё и на выводах 15 и 33 соответственно в попарном включении.

Иными словами, контроллеры абсолютно взаимозаменяемые несмотря на установленное ПО с некоторыми уточнениями. Контроллер -72 с залитой программой V5V13L05, например, будет работать на машине на которой стоял ранее контроллер -41 -61 -71 без переделки проводки, но!!! контроллер, например -42 с залитой в него программой V5V05L05 будет работать в машине где ранее стоял контроллер с одновременным впрыском в случае установки четырёх перемычек и удалении ключа нагревателя ДК, или без переделок совсем вместо -41 -61 -42 -62.

Пример: Контроллер -72, программа М30 с выключенным ДФ (хотя можно выключить только контроль исправности ДФ) и выключенным ДК  во как извратился :)) будет работать абсолютно на любых моделях ВАЗ, за исключением МП7 и БОШ797 …

Ещё пример: Контроллер -72 , программа L05 , будет работать везде без переделок проводки.

Ещё пример: Контроллер -42, программа L05, будет работать вместо -72, если выпаять ключ подогрева ДК (2 на фото) (хотя можно и не выпаивать, а просто перерезать дорожку от ключа к выводам ЭБУ) и впаять четыре перемычки (1 на фото) …

Совсем дикий пример: Контроллер -72, программа М30 или L25 с отключенным контролем исправности нагревателя ДК и увеличенным временем, отведённым на готовность ДК (нагреватель то не нагревается), отключить ошибки про неисправность ДК , будет работать на проводке (комплектации) Евро‐2 , только выхлопные газы будет чуять очень нескоро, пока ДК не нагреется от выхлопных газов … (автор проверял последний пример очень давно, с тех пор могут и не запаивать детали по каналу ДК)

©SPY

BOSCH MP7.0H

Довольно популярна сейчас тема замены блоков MP7.0 на Январь, Bosch или VS. Такая замена требует перекроссировки (перекоммутации) проводки. Естественно, что коль скоро проводку нужно переделывать, Вы сами можете решить, под какой тип впрыска Вы будете это делать. 

Варианты перекроссировки можете посмотреть здесь и здесь.

Перекроссировка как метод тюнинга связана прежде всего со сложностью понимания и настройки алгоритмов ПО этих систем, но ситуация постепенно улучшается :). Этот тип ЭБУ является самым «щадящем» для пользователя. Нередки случаи, когда система сохраняла удовлетворительное состояние при неисправности половины датчиков.

Блоки МП7 практически идентичны между собой, но есть варианты для Евро‐III, в которых поддерживается управление двумя подогревателями. Соответственно, в системах Евро‐II эти элементы просто не запаяны.

BOSCH M7.9.7

Как было указано выше – Bosch M7.9.7 устанавливался серийно на часть двигателей «десятого» семейства 1,5 л. и устанавливается на 1,6 л. в комплектациях 8V (21114) и 16V (21124), Калина 1,6 8V (11183) и на Нива‐Шевроле 1,7 л. 8V (21214). Все системы удовлетворяют требованиям Евро 2/ Евро3, все с фазированным впрыском. Конструктивно ЭБУ выполнен на другой тип проводки, имеет 81‐контактный разъем.

ПО для данного ЭСУД разработано специалистами BOSCH c дальнейшей адаптацией специалистами ВАЗ. ПО данного ЭБУ представляет собой матмодель двигателя с минимальным набором «внешних» калибровок. В данное время нет возможностей для управления комплектацией и самообучениями блока. Но работы в этом направлении ведутся и чип – тюнинг данных систем уже можно довольно успешно производить с помощью ПО от SMS‐Software.

С августа 2005 г. появилась новая аппаратная реализация этих блоков, без внешней flash, с памятью, встроенной в процессор (условное обозначение М7.9.7+). ЭБУ старого и нового типа полностью функционально взаимозаменяемы. Но прошивки для «старой» и «новой» реализации несовместимы и невзаимозаменяемые, т.к предназначены для разных типов процессоров. Прошивки даже имеют разный размер – 512К для М7.9.7 и  832К для М7.9.7+.   

Январь 7.2

Январь 7.2 конструктивно ЭБУ выполнен на другой тип проводки, аналогичной Bosch M797(+), имеет 81‐контактный разъем и производится на двух разных производствах – Итэлма (Первый элемент в обозначении прошивки – литера «I» и префикс 32 или 82 в маркировке ЭБУ) и Автэл (Первый элемент в обозначении прошивки – литера «А» и префикс 31/81 ). . Эти ЭБУ абсолютно взаимозаменяемые по прошивкам и проводке, то есть 31 блок идентичен 32, а 81 идентичен 82. Блоки для 8V и 16V несовместимы, т.к в 8V отсутствуют ключи управления 2‐мя катушками зажигания. Январь 7.2 совместим по проводке с Bosch M7.9.7, то есть их можно менять друг на друга (естественно, соответственно  комплектации (8 или 16 кл.) и со своим ПО). 

Программное обеспечение этих ЭБУ является логическим продолжением семейства Январь 5, т.е работающее практически по тем же алгоритмам. Соответственно, возможно реализовать недоступную для Bosch M7.9.7 функцию «упрощения» до норм Россия‐83, исключения из расчетов обратной связи по ДК. Январь 7.2 полностью совместим по проводке с Bosch M7.9.7 (M7.9.7+) и могут быть взаимозаменены с учетом параметров двигателя. 

Есть так же вариант ЭСУД на основе Январь 7.2 и для «классики», без канала детонации и для «Калины». Вариант для «Калины» (11183) отличается аппаратно драйверами управления клапаном адсорбера и бензонасоса, поэтому должен применяться только с «калиновскими» прошивками.

Практически все автомобили выпуска c конца 2005 г. оснащены системами Январь 7.2 и Bosch M7.9.7. Все остальные системы сняты с производства и не поставляются на конвейер. 

М7.3

В народе часто называется Январем 7.3. Это не верно. Данный ЭБУ выпускается и устанавливается на конвейере ВАЗ на автомобили третьего экологического класса, выпуска после ноября 2007.

Блоки производятся двумя российскими производителями – Итэлма и Автэл. ПО для переднеприводных ВАЗ серий 308 (1,6, 16V) и 317 (1,6 8V) у данных производителей несовместимо. Хотя блоки и идентичны аппаратно, ПО по разному использует возможности процессора и заливать ПО нужно только в соответствии с производителем блока – в «итэлмовский» ЭБУ только «ителмовский» софт (I308…, I317…), в ЭБУ производства «Автэл», только «автэловский» (А308…, А317…).  ПО для «классики» все проще – одним и тем же ПО  можно программировать ЭБУ любого производителя (А327… или I327…).  

Т.к контроллер М7.3 аппаратно практически идентичен Январь 7.2+, то, с некоторыми ограничениями, М7.3 можно переделать для работы с ПО Я7.2+

M7.4

Первые ЭБУ М74 для автомобилей «Самара» (модели 2113, 2114, 2115) имели разные аппарантные исполнения, соответственно и прошивки в них были невзаимозаменяемые.

Эти три прошивки нельзя менять между собой:

I414DA01 (11183–1411020-02) I414DB02 (11183–1411020-02) I414DC03 (11183–1411020-02)

Т.е писать в них можно только «родное» ПО, или на основе более свежего, универсального (смотри далее).

Позже АВТОВАЗ выпустил так называемую «универсальную прошивку» I414DE06 (11183–1411020-02), в которой учтены все аппаратные различия и которая работает вместо любой, из указанных выше, в любом предыдущем аппаратном исполнении ЭБУ. В прошивке I414DE06 так же был выявлен заводской дефект по расчету воздуха, из‐за чего эл.дроссель уходил в аварию.

Последняя на настоящий момент прошивка из этой серии I414DE07 (11183–1411020-02) устраняет проблему с уходом дросселя в аварию за счет сужения диапазона мониторинга дросселя. Её применяем вместо всех, указанных выше прошивок.

Отдельно следует отметить ЭБУ с прошивкой I414DD04 (11183–1411020-02). В этот блок нужно делать тюнинг только на основе «родного» ПО, более раннее или более позднее ПО будет работать не совсем корректно, при программировании любым другим ПО загорится лампа CE (аппаратное отличие – подключение на другой порт процессора), при этом в памяти никаких ошибок нет.

С прошивками M74 для автомобилей «Калина», ситуация аналогичная, первые прошивки этой серии были невзаимозаменяемые между собой.

I444CB02 (11183–1411020-52) I444CC03 (11183–1411020-52)

Затем вышла «универсальная» прошивка I444CE06 (11183–1411020-52), тут так же был заводской дефект и его исправляет следующая серийная версия I444CE07 (11183–1411020-52), в которой, в свою очередь, присутствовал дефект с «забросом оборотов» при включенном кондиционере и движении накатом.

Проблема устранена в следующей серийной версии I444CE08 (11183–1411020-52), которой можно заменить все перечисленные ПО.

Так же отдельно следует отметить ЭБУ с прошивками I444CD04 (11183–1411020-52), I484GU17 (11186–1411020-22), I484GKA1 (11186–1411020-23). В эти блоки желательно делать тюнинг только на основе «родного» ПО. При записи другого ПО, независимо от типа аппаратного обеспечения, сгорают резисторы ключей зажигания. Будьте внимательны. Начиная с ПО версии xxxxxIxx (например I444CI07) вместо внешней микросхемы EEPROM в ЭБУ используется внутренняя FLASH процессора для хранения данных. Естественно, необходимо менять только на это или более раннее ПО. При работе с EEPROM ЭБУ всегда выбирайте соответствующее расположение области хранения данных. Программатор «Combiloader» при работе с FLASH контроллера область (0xC0000‐0xD0000), отведённая для использования в качестве внутренней EEPROM, не считывается и не записывается независимо от выбора типа EEPROM. В серийных версиях ПО, предназначенных для ЭБУ с внешней EEPROM, указанная область не используется.

В настоящее время (конец 2015) проект М74 развивается очень стремительно, серийные прошивки выходят с пугающей регулярностью. В них устраняются замеченные баги, вносятся новые. Короче, процесс идет. Существует три разновидности аппаратной реализации платы контроллера, причем даже под одним номером 11186–1411020-22 выпускаются разные версии 4.1х и 6.3х, которые, естественно, несовместимы между собой. M74 это тот ЭБУ, в который, если нет достоверной информации, лучше заливать тюнинг на основе «родного» ПО. 

При всей кажущейся сложности и запутанности данного материала – на самом деле все очень просто и становится через некоторое время совершенно очевидным, надо только уяснить для себя общность ЭБУ, ПО и проводки к нему. То есть, взаимозаменяемость ЭБУ решается по трем критериям: а) Совместимость по нормам токсичности б) Совместимость по проводке (подключению) в) Совместимость по ПО.

Система впрыска — Лада 2108, 1.7 л., 1997 года на DRIVE2

Вчера переделал одновременный впрыск на попарно-параллельный. Нужно лишь протянуть 4 провода до форсунок и соединить их с контроллером по схеме. Залил новую программу под этот впрыск. Машина стала гораздо стабильнее и тише работать на холостых, появилась больше тяга с низов и быстрее раскручивается мотор.

Посмотрю что будет с расходом, так как на одновременном, по городу с активной ездой и стартами вышло 11,7 л.

Осталось не много откатать эту программу и внести корректировки.

Фазированный впрыск сделать не удалось, так как на распредвалу не оказалось шпонки для датчика фаз, который кстати я зря только поставил.

В планах сделать еще 2-х режимную прошивку.

Для справки:

• Одновременный, когда за один рабочий цикл двигателя (2 оборота коленвала) все 4 форсунки отрабатывают два раза одновременно.

• Попарно-параллельный или групповой, когда за один рабочий цикл двигателя форсунки отрабатывают парами (1-4 и 2-3) по два раза.

• Фазированный или последовательный, когда за один рабочий цикл двигателя каждая форсунка отрабатывает по одному разу в соответствии с фазой впрыска.

Суммарное время впрыска на одновременном и попарно-параллельном способе одинаково, на фазированном — в два раза выше, т.к за 1 цикл одновременного и попарно-параллельного впрыска форсунка включается 2 раза, а на фазированном — 1, поэтому время ее работы увеличено примерно в 2 раза.

Пробег: 7777 км


Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)
Загрузка...