Как пользоваться стробоскопом


Стробоскоп для настройки угла опережения зажигания своими руками

Стробоскоп для настройки УОЗ своими руками

При замене трамблера, или ремонта связанное с воспламенением смеси, будь то смена карбюратора, сталкиваемся с тем что нужно настроить угол опережения зажигания.

Что такое угол опережения зажигания(УОЗ)-угол поворота кривошипа от момента, при котором на свечу зажигания начинает подаваться напряжение для пробоя искрового промежутка до занятия поршнем ВМТ.

Для настройки УОЗ, большинство мастеров использует так называемый автомобильный стробоскоп, который вспыхивает в момент когда пробегает искра на свече зажигания. Подробно как пользоваться стробоскопом для настройки уоз можно увидеть в интернете. В этой же статье приведена простая схема автомобильного стробоскопа, который своими руками может собрать почти любой начинающий радиолюбитель.

 

 

 

Схема устройства:

Рассмотрим работу схемы:

При подключении устройства к аккумуляторной батарее конденсатор C1 через резистор R3 быстро начинает заряжаться. Достигнув определённого уровня, напряжение через светодиоды и резистор R4 поступает на базу транзистора, который открывается. При этом срабатывает реле Р1, его контакт замыкается и подготавливает цепь, состоящую из тиристора, контакта реле Р1, светодиодов и конденсатора С1 в готовность. При поступлении на управляющий электрод тиристора через делитель R1, R2 импульса с контакта Х1 происходит мгновенное открытие тиристора и конденсатор быстро разряжается через светодиоды. Происходит яркая вспышка! База транзистора, через резистор R4 и тиристор соединяется с общим проводом и транзистор закрывается, отключая реле. Так как якорь реле имеет небольшую инерционность и остаточную намагниченность, то контакт размыкается не сразу, а через несколько мкс, увеличивая тем самым время горения светодиодов. Контакт размыкается, обесточивается тиристор и схема переходит в первоначальное состояния, ожидая следующий импульс. Благодаря этому мерцание стробоскопа становится более ярким и метка на маховике хорошо просматривается, оставляя после себя небольшой шлейф. Подбором конденсатора можно регулировать длительность горения светодиодов. Чем больше ёмкость, тем ярче вспышка, но зато длиннее шлейф метки. При меньшей ёмкости резкость метки увеличивается, но падает яркость. Делать это нецелесообразно так как настройку ОУЗ придётся делать в темноте, что не совсем удобно.

После сборки стробоскопа необходимо проверить его работоспособность. Подключаем к выводам Х2 и Х3 источник постоянного напряжения 12в. При замыкании выводов Х1 и Х2 между собой должно "жужжать" реле (звонковый режим).

При настройке ОУЗ следует на метку маховика или шкива с помощью штриха нанести белую точку для лучшей видимости. Элементы стробоскопа  размещают в корпусе светодиодного фонарика. Через задние отверстия фонарика пропускают питающие провода длиной примерно 0,5 м, на концы  которых припаивают крокодильчики с соответствующей цветной маркировкой. С боку в корпусе просверливают отверстие, через которое пропускают экранированный провод контакта Х1. Длина его должна быть не более 0,5 м. На конце экранную оплётку заматывают изолентой, а к центральной жиле припаивают медный провод длиной 10 см, который служит датчиком стробоскопа. Этот провод при подключении следует намотать на высоковольтный провод первого цилиндра поверх изоляции, достаточно 3-4 витка. Намотку нужно делать как можно ближе к свече, чтобы исключить влияние соседних проводов.

О деталях: В конструкции используются малогабаритные компоненты. Транзистор КТ315 - его можно найти в любой аппаратуре прошлых лет с любым буквенным индексом. Тиристор КУ112А - от импульсного блока питания старого телевизора. Резисторы малогабаритные 0,125вт. Фонарик с диодами 6-12 штук. Если фонарик снабжен электронным маячком, то эта плата удаляется. Конденсатор C1 на напряжение не менее 16в. Диод V2 практически любой низкочастотный КД105, Д9. Реле малогабаритное  (BS-115-12A-DC12V), (RWH-SH-112D, 12A, кат.=12в). Можно так же использовать отечественные малогабаритные реле например РЭС-10 с напряжением катушки 12в.

Делаем карманный стробоскоп - Электросхемы - Статьи

Схема стробоскоп для авто своими руками

Одним из важнейших условии исправной работе! автомобильного бензинового двигателя является правильная установка угла опере­жения зажигания. В двигателях автомобилей ВАЗ установка угла опережения зажигания произво­дится по четырем меткам, - одной на шкиве коленвала, и трем на корпусе блока. Обычно, для регули­ровки зажигания пользуются довольно громоздким прибором. -стробоскопом. По питанию стробо­скоп подключают к аккумулятору автомобиля, а третий провод. - к свечному проводу первого цилинд­ра. При работающем двигателе лампа стробоскопа вспыхивает каждый раз. как только импульс высокого напряжения поступает на свечу первого цилиндра. Свет пампы направляют на метки. В результате синхронною вспыхивания лампы мы видим четыре метки, - три на блоке и одну на шкиве, которая нам кажется неподвижной По взаимному расположению этих моток опре­деляют правильность установки зажигания (метка на шкиве должна быть напротив сред­ней метки на блоке, если это не так, нужно поправить поворотом корпуса трамблера).

Стандартный стробоскоп довольно громозд­кий, тяжелый и хрупкий прибор, в основном, бпагодаря имеющейся в нем газоразрядной пампе и импульсному трансформатору. Но, используя современную элементную базу, можно сделать стробоскоп немногим больше шариковой ручки.

На рисунке 1 показана схема стробоскопа, в котором вместо газоразрядной пампы рабо­тает свсодиодная автомобильная лампочка на 12V (сейчас такие светодиоды-пампы ста­ло модно устанавливать в подфарники вместо памп накаливания).

Рис. 2.

Подключается прибор к системам автомоби­ля тремя проводами с зажимами «Крокодил» Два - к аккумулятору, а третий к проводу 1-го цилиндра. Третий «Крокодил» (подключае­мый к свечному проводу) немного переде­лан. - его «зубы» загнуты внутрь, чтобы не портить свечной провод, и он скорее напоми­нает металлическую прищепку.

Как только импульс высокого напряжения поступает на свечу 1-го цилиндра, через емкость между жилой свечного провода и корпусом «Крокодила-прищепки» всплеск напряжения поступает на вывод 2 элемента 01.1 (стабилитрон VD1 защищает вход эле-мента от перенапряжения) Одновибратор на элементах 01.1-D1.2 сформирует импульс, длительность которого около 1 mS. Этот импульс через буферный каскад на элемен­тах 01.3 и 01.4 поступает на базу транзисто­ра V11, входящего в состав импульсного ключа VT1-VT2. Ключ открывается и вспыхи­вает светодиодная лампочка HL2-

Теперь о деталях схемы С1. R1 и R2 рас­паяны непосредственно в ручке «Крокоди­ла», подключаемого   на   свечной провод.

Соединительный кабепь. - мягкий экраниро­ванный, длиной не более ЬО см. Для подклю­чению к аккумулятору. - обычные провода, как для «переноски», любой длины (в разум­ных пределах). Диод V02 служит для заши­ты схемы от случайной переполюсовки пита­ния. Светодиод HL1 - индикатор правильного подключения к аккумулятору.

Основой для прибора послужил цилиндри­ческий китайский карманный фонарик. Все его «внутренности» (выключатель лампочка, батарейки) удалены, оставлен пустой корпус и конический отражатель. Основание отра­жателя немного расширено так, чтобы в него можно было установить светодиодную авто­мобильную лампочку. В корпусе размешена печатная плата (рис. 2) на которой смонти­ровано большинство деталей. В корпусе просверлены отверстия под соединительные провода и светодиод HL1.

Подстроечный резистор R4 служит для установки длительности вспышки HL2 такой,

при которой метка на вращаюшемся шкиве работающего двигателя видна неподвижной и не размазанной, но видимость, при этом остается достаточной.

Если прибор не реагирует на импульсы в свечном проводе, к которому подключен «Крокодил-прищепка», ипи реагировать начи­нает только при сильном сжатии «Крокоди­ла», нужно увеличить сопротивление R2.

Вместо светодиодной лампочки можно использовать обычный сверхяркий свето­диод, включив его через резистор сопротив­лением около 10 От. Но пользоваться стро­боскопом будет не так удобно, потому что из-за меньшей яркости света нужно будет его располагать ближе к меткам на двигателе.

Похожие материалы

СТРОБОСКОП Автомобильный СТБ 04.01 «ЛУЧ-К», инструкция по эксплуатации

СТРОБОСКОП Автомобильный СТБ 04.01 «ЛУЧ - К»

Руководство по эксплуатации

Посмотреть, сколько это стоит в нашем магазине >>>

1. ОБЩИЕ УКАЗАНИЯ

1.1. Автомобильный стробоскоп СТБ 04.01 «Луч-К» предназначен для проверки и регулировки начального угла опережения зажигания, а также для проверки работоспособности центробежного и вакуумного регуляторов опережения зажигания автомобильных карбюраторных двигателей.

1.2. Оригинальная, удобная форма стробоскопа, несомненно, представит большой интерес для автомобилиста. В стробоскопе применена специальная лампа, позволяющая провести регулировку с безопасного расстояния, срок службы которой – 7 млн. вспышек при большой силе света.

1.3. Приобретение стробоскопа, не требующего специального ухода в процессе эксплуатации, упростит обслуживание системы зажигания вашего автомобиля.

1.4. Необходимо внимательно прочесть описание и руководствоваться им при работе со стробоскопом.

1.5. При покупке стробоскопа необходимо проверить сохранность пломб, его комплектность и убедиться, что в гарантийном талоне проставлены: штамп магазина, подпись продавца и дата продажи.

1.6. Стробоскоп работает с любыми системами зажигания.

 

2. ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Источник питания – бортовая электросеть автомобиля с номинальным напряжением 12 В или внешний источник постоянного тока напряжением 12…15 В и током нагрузки не менее 1,5 А.

2.2. Потребляемая мощность не более 10 Вт.

2.3. Верхний предел частоты следования световых импульсов 50 Гц, что соответствует скорости вращения коленчатого вала четырёхцилиндрового двигателя 6000 об/мин.

2.4. Режим работы повторно-кратковременный:

10 минут – работа, 10 минут – пауза.

2.5. Наработка стробоскопа в повторно-кратковременном режиме не менее 50 часов.

2.6. Стробоскоп обеспечивает наблюдение за контрольными метками двигателя автомобиля с расстояния не менее 500 мм. при отсутствии прямых солнечных лучей. Допускается задержка зажигания лампы до 30 сек., что не является браковочным признаком.

2.7. Стробоскоп предназначен для эксплуатации при температуре окружающего воздуха от минус 10 до плюс 40?С.

2.8. Масса стробоскопа не более 0,7 кг.

2.9. Габаритные размеры стробоскопа не более 214,6х70,3х44,3 мм.

2.10. Срок службы, лет, 6.

 

3. КОМПЛЕКТНОСТЬ

3.1. В комплект поставки входят:

1) автомобильный стробоскоп СТБ 04.01 «Луч-К»       - 1 шт.

2) руководство по эксплуатации                                   - 1 шт.

3) индивидуальная упаковка                                          - 1 шт.

 

4. ТРЕБОВАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

4.1. Для обеспечения безотказной эксплуатации прибора и безопасной работы необходимо соблюдать следующие меры предосторожности:

4.1.1. К работе приступать только после ознакомления с настоящим руководством.

4.1.2. При перерывах в работе провод питания со знаком «+» должен быть отключен от аккумулятора.

4.1.3. Категорически запрещается прикосновение к движущимся частям автомобиля, освещённым стробоскопической лампой и кажущимися неподвижными вследствие стробоскопического эффекта.

 

5. УСТРОЙСТВО ИЗДЕЛИЯ

5.1. Корпус 1 стробоскопа (см. рисунок) выполнен из двух половин, скреплённых винтами, и ободка с двумя соединёнными линзами для фокусирования светового потока лампы.

Из корпуса стробоскопа выходят шнур питания 5 и провод 6 с датчиком 2. Шнур питания заканчивается двумя зажимами. На губке зажима 4 имеется маркировка полярности «+» или изоляция красного цвета.

5.2. Основным элементом прибора является импульсная стробоскопическая лампа, вспышки которой происходят в момент появления искры в свече первого цилиндра двигателя. Вследствие этого метки, нанесённые на маховике или других вращающихся частях двигателя, жёстко связанных с коленчатым валом, при освещении их стробоскопом кажутся неподвижными (стробоскопический эффект).

Это позволяет наблюдать сдвиг между моментом зажигания и моментом прохождения поршнем верхней мёртвой точки, т.е. величину опережения зажигания на всех режимах работы двигателя, контролировать правильность установки начального угла опережения зажигания, проверять работоспособность центробежного и вакуумного регуляторов опережения зажигания.

Сам стробоскоп при этом никакого влияния на величину наблюдаемого угла опережения зажигания не оказывает.

Датчик состоит из двух частей. Конструкция датчика постоянно совершенствуется. Все изменения конструкции не ухудшают качества изделия.

 6. ПОДГОТОВКА АВТОМОБИЛЯ К ПРОВЕРКЕ

6.1. Проверить и, если необходимо, отрегулировать зазор между контактами прерывателя. Проверить наличие меток для установки зажигания, поставленных заводом-изготовителем.

Очистить метки и отметить их белой краской или мелом, чтобы они были более заметны. Для ряда автомобилей, в качестве примера, места расположения подвижный и неподвижных меток и их характеристики указаны в Таблице 2.

Прогреть двигатель и отрегулировать обороты холостого хода, установив их минимально возможными, устойчивыми.

Таблица 2

Марка

автомобиля

Метка

Примечание

подвижная

неподвижная

«Жигули»
моделей 2101-2107

«Нива»

«Жигули»
моделей 2108-2112

(карбюраторные)

На шкиве
коленчатого вала

Три метки на
крышке привода механизма газораспределения соответствуют углу опережения
10,5,0 градусов

Искра в первом
цилиндре должна быть в момент совмещения подвижной и 2-ой неподвижной меток,
что соответствует 5-7 градусов опережения

«Москвич»

всех моделей,

кроме 407-408

Метки В.М.Т. и М.З. на шкиве коленчатого вала

Штифт,
запрессованный в крышку распределительных шестерен

Искра в первом
цилиндре должна быть в момент совмещения метки М.З. с острием
штифта

«Москвич»

407-408

Метки В.М.Т. и
М.З. на маховике

Острие штифта
на картере сцепления

Искра
в первом цилиндре должна быть в момент совмещения метки М.З. с острием штифта

«Запорожец»

всех моделей

Метки В.М.Т. и
М.З. на шкиве коленчатого вала

Выступ на маслозаливной горловине или метки (1 или 2) на крышке
шестерен газораспределения

Искра в первом
цилиндре должна быть в момент совмещения метки М.З. с выступом на горловине
или меткой на крышке шестерен (при двух метках – только с меткой А)

«Волга» ГАЗ-21,

ГАЗ-24

Одно или два
отверстия на ободке шкива коленчатого вала

Штифт, запрессованный
в крышку распределительных шестерен

Искра в первом
цилиндре должна быть в момент совмещения первого по ходу вращения шкива
отверстия с установочным штифтом

 

 

7. ПОДГОТОВКА ПРИБОРА К РАБОТЕ

7.1. Произвести внешний осмотр шнура питания, провода датчика и убедиться в отсутствии нарушения изоляции.

7.2. Протереть линзу стробоскопа сухой, мягкой тканью (желательно фланелью).

7.3. Для обеспечения наблюдений контрольных меток рекомендуется обозначить их мелом.

7.4. Надеть датчик 2 (см. рисунок) на высоковольтный провод, идущий к свече первого цилиндра, как можно ближе к свече.

7.5. Провод стробоскопа с зажимом 4, обозначенным знаком «+» (см. рисунок), присоединить к клемме «+» аккумуляторной батареи.

7.6. Провод стробоскопа с зажимом 3 (см. рисунок) присоединить к клемме «-» аккумуляторной батареи или корпусу автомобиля.

ВНИМАНИЕ! Недопустимо подключение стробоскопа к бортовой сети автомобиля, а также к другим источникам питания, имеющим, вследствие неисправного регулятора напряжения, напряжение свыше 15 В. Даже при неработающем двигателе и отсутствии вспышек лампы, стробоскоп через каждые 10 минут необходимо отключать от сети автомобиля не менее чем на 10 минут.

8. ПОРЯДОК РАБОТЫ

8.1. Проверку начального угла опережения зажигания и работы регуляторов опережения зажигания необходимо производить на прогретом двигателе в следующей последовательности:

8.1.1. Отсоединить трубку вакуумного регулятора от прерывателя-распределителя (в дальнейшем «распределителя»).

8.1.2. Подключить стробоскоп согласно разделу 7 данного руководства.

8.1.3. Проверить правильность установки начального угла опережения зажигания. Для этого запустить двигатель и при минимальных оборотах холостого хода осветить стробоскопом установочные метки. При правильной установке зажигания и устойчивой работе двигателя подвижная установочная метка (будет казаться неподвижной вследствие стробоскопического эффекта) совпадёт с неподвижной установочной меткой. При несовпадении меток остановить двигатель, ослабить винт (или гайку) крепёжной скобы распределителя, повернуть корпус распределителя влево или вправо на необходимую величину, повторить проверку, При совпадении меток закрепить корпус распределителя.

Если при проверке положение подвижной метки в свете стробоскопа нестабильно, то это может быть вызвано чрезмерным износом деталей привода распределителя, втулок приводного валика, заеданием рычага прерывателя на оси.

8.1.4. Проверка работы центробежного регулятора опережения зажигания. Для этого необходимо плавно увеличивать скорость вращения коленчатого вала двигателя и наблюдать за положением меток, освещаемых стробоскопом. При исправной работе центробежного регулятора подвижная метка должна плавно смещаться относительно неподвижной в сторону увеличения угла опережения зажигания. При неисправном регуляторе смещение метки будет отсутствовать или проходить рывками.

В этом случае распределитель нужно отремонтировать или заменить на исправный.

8.1.5. Проверка работы вакуумного регулятора опережения зажигания. Для этого установить обороты двигателя, соответствующие наибольшему центробежному регулированию, и, наблюдая за положением меток, подключить трубку вакуумного регулятора.

В случае исправности последнего подвижная метка должна отклониться в сторону, противоположную вращению. Если метка остаётся в той же точке, проверить капсулу разрежения распределителя и цепь трубки. Возможными причинами неисправностей могут быть неплотности соединений или засорение трубки.

Примечание. Установка начального угла опережения зажигания, проведённая с помощью стробоскопа при минимальных оборотах холостого хода, отключенном вакуумном регуляторе и исправном центробежном, должна практически совпадать с установкой угла опережения зажигания, проводимой на неработающем двигателе с помощью контрольной лампы. Если при настройке стробоскопом это условие не выполняется, а двигатель после настройки работает неудовлетворительно, то прерыватель-распределитель имеет дефекты, чаще всего – неправильная характеристика работы центробежного регулятора.

Примечание. При изменении полярности подключения стробоскоп работать не будет, к поломке его изменение полярности не приводит. При наличии в системе зажигания дефектов, приводящих к снижению высокого напряжения на свечах (трещины в изоляции, утечка по грязи, нагар на свечах и т.д.), стробоскоп может не давать вспышек или давать их с пропусками из-за недостаточного напряжения поджига на электродах импульсной лампы. Конструкция датчика постоянно совершенствуется, что не ухудшает качества работы стробоскопа.

Автомобильный стробоскоп – как сделать своими руками

Автомобильный стробоскоп – это электронный светотехнический прибор, позволяющий по метке на валу двигателя и шкале на его корпусе визуально определить и отрегулировать угол опережения зажигания (УОЗ) в двигателях внутреннего сгорания автомобиля. Принцип работы стробоскопа основан на стробоскопическом эффекте (зрительной иллюзии) возникающем, когда частота вспышек стробоскопа совпадает или близка частоте вращения коленчатого вала двигателя автомобиля.

Момент зажигания горючей смеси в автомобильном двигателе внутреннего сгорания существенно влияет на максимальную мощность, КПД, температурный режим и ресурс двигателя. Поэтому крайне важно, чтобы воспламенение горючей смеси происходило в нужный момент времени. Обычно воспламеняют смесь за несколько градусов до прихода поршня в верхнюю мертвую точку, и этот угол называется Угол опережения зажигания.

При увеличении оборотов двигателя угол опережения зажигания должен увеличиваться по заданной кривой, поэтому он выставляется в режиме работы двигателя на холостом ходу и контролируется во всем диапазоне изменения его оборотов в минуту, вплоть до 5000. Для контроля и установки УЗО и служит Автомобильный стробоскоп.

Радиолюбителям разработано много схем автомобильных стробоскопов, начиная от самых простейших на неоновых лампочках, и заканчивая современными схемами, с использованием микроконтроллеров, полевых транзисторов и сверх ярких светодиодов. Но такая комплектация дорогая, да и редко кто имеет программатор, чтобы программировать контроллеры. Более пятнадцати лет назад я собрал свой вариант схемы стробоскопа, который и представляю Вашему вниманию.

Электрическая схема стробоскопа

Отличительная особенность схемы представленного стробоскопа, это простейшая комплектация и возможность контроля угла опережения зажигания в автомобильном двигателе вплоть до 5000 оборотов в минуту.

Структурно схема состоит из нескольких функциональных узлов. Преобразователя напряжения, импульсной световой лампы, блока поджога и индуктивного датчика момента искрообразования.

Принцип работы

Преобразователь служит для преобразования напряжения аккумулятора 12 В в необходимое для питания импульсной световой лампы ИСШ-15 напряжение 300 В. Выполнен преобразователь на микросхеме TL494, транзисторах VT1,2 и трансформатора Т1. Блок поджога световой лампы состоит из повышающего трансформатора Т2, конденсатора С6 и тиристора VD8. Индуктивный датчик момента искрообразования состоит из катушки индуктивности L1 и транзистора VT3.

Благодаря применению в преобразователе ШИМ-контроллера TL494 (отечественный аналог 11114ЕУ4), схема преобразователя получилась простой и сохраняющая работоспособность при изменении питающего напряжения от 7 до 15 В. Микросхема TL494 применяется практически во всех компьютерных блоках питания, выходит из строя редко, поэтому ее можно для изготовления стробоскопа выпаять из не подлежащего ремонту блока.

С выводов микросхемы 9 и 10 выходят прямоугольные противофазные импульсы с частотой около 20 кГц, заданной номиналом конденсатора С1 и резистора R1, и через токоограничивающие резисторы R4,5 номиналом 1 кОм поступают на базы ключевых транзисторов VT1,2. С2,3 нужны для улучшения передних фронтов импульсов, VD1,2 защищают транзисторы от пробоя обратным напряжением. Если поставить полевые транзисторы, например IRFZ44N, то резисторы R4,5 и конденсаторы С2,3 нужно исключить, а емкость конденсатора С1 уменьшить до 1000 пф. Тогда частота работы преобразователя увеличится до 200 кГц, что позволит измерять угол опережения зажигания при оборотах двигателя до 10000 об/мин.

Открываясь по очереди, транзисторы обеспечивают протекание тока по первичным обмоткам трансформатора Т1, благодаря чему во вторичной обмотке возникает высокое напряжение, которое поступает на диодный мост и уже выпрямленное заряжает конденсатор С5 до величины 400 В. Это напряжение подводится к 5 выводу лампы EL1 и еще через токоограничивающий резистор R5 и первичную обмотку трансформатора Т2 заряжает конденсатор узла поджига С6.

Датчик момента искрообразования собран на катушке индуктивности L1, транзисторе VT3, и тиристоре VD8. Через кольцо трансформатора продевается высоковольтный провод, идущий к свече. В момент появления высокого напряжения, в катушке наводится ЭДС, которая через конденсатор С7 поступает на базу транзистора VT3. Транзистор закрывается и на управляющий электрод тиристора VD8 поступает через резистор R7 положительное напряжение. Тиристор открывается и конденсатор С6 через него разряжается. При этом ток разряда проходит через первичную обмотку трансформатора Т2. Во вторичной обмотке наводится высокое напряжение поджига лампы, которое подается на ее вывод 7. Конденсатор С5, подключенный к выводам лампы 1 и 5, полностью через нее разряжается. Величина емкости конденсатора определяет яркость вспышки.

Применяемый тиристор VD8 имеет максимально допустимое напряжение анод-катод 300 В. Установленный резистор R6 совместно с резистором R5 образуют делитель, исключающий подачу напряжения более 300 В. При использовании более высоковольтного тиристора резистор R6 нужно исключить.

Для защиты по питанию установлен предохранитель на 5А, а от неправильного подключения полярности диод VD9. VD11 индицирует о подключении стробоскопа к аккумулятору.

Конструкция и детали

Вся схема стробоскопа собрана в двух половинчатом пластмассовом корпусе размером 4,5×7,5×16 см. Для выхода света от импульсной лампы в торцевой стенке сделано круглое отверстие, в которое вставлена линза в оправке.

Это не обязательно, окошко можно закрыть для защиты от попадания внутрь стробоскопа грязи любым прозрачным материалом, например органическим стеклом. Лампа, для уменьшения световых потерь, на половину обвернута станиолевой фольгой.

Все детали стробоскопа, кроме лампы, собраны на печатной плате, представленной на фотографии.

Импульсный трансформатор Т1 имеет две обмотки. Первичная обмотка имеет отвод от середины. При намотке нужно отмерять необходимую длину провода диаметром 0,3-0,5 мм, сложить его вдвое и намотать 24 витка. Затем начало одной обмотки соединить с концом другой, это будет средняя точка. Вторичная обмотка мотается проводом диаметром 0,15-0,25 мм в количестве 638 витков. Для изготовления трансформатора ферритовый сердечник с катушкой можно использовать от понижающего трансформатора неподлежащего ремонту импульсного блока питания АТ или АТХ компьютера, предварительно удалив все обмотки.

Импульсный трансформатор поджига Т2 мотается на ферритовом кольце диаметром 15-20 мм проницаемостью от 1000 до 3000 НМ. Первичная обмотка мотается проводом 0,3 мм и имеет 4 витка. Вторичная обмотка мотается проводом диаметром 0,1 мм в шелковой изоляции и количеством витков 500. Большое количество витков вторичной обмотки взято не случайно, при больших оборотах двигателя конденсатор С6 не успевает полностью заряжаться и напряжение поджига уменьшается. Благодаря запасу обеспечивается достаточное напряжение для поджига. Перед намоткой ферритовое кольцо нужно обязательно покрыть изоляционной лентой для исключения повреждения изоляции провода. Перед покрытием изоляцией необходимо мелкой наждачной бумагой, сточить острые грани по окружностям кольца. После намотки, для исключения межвиткового пробоя изоляции при высокой влажности, обмотки трансформатора пропитаны воском.

Катушка индуктивного датчика намотана на ферритовом кольце диаметром 40 мм с проницаемостью от 1000 до 3000 НМ. На кольцо равномерно по всей окружности намотано 35 витков провода диаметром 0,8 мм. Сверху обмотка покрыта слоем изоляционной ленты.

Диаметр ферритового кольца выбран исходя и возможности продевания через катушку высоковольтного провода, идущего к автомобильной свече. Но практика применения стробоскопа показала, что он начинает устойчиво работать, если просто катушку приложить к высоковольтному проводу.

К аккумулятору стробоскоп подключается с помощью двух зажимов типа «крокодил». Для безошибочного подключения на крокодилах нанесена маркировка полярности.

Конденсаторы С5 и С6 типа К73-17. Импульсная лампа EL1 типа ИСШ-15, является маломощным строботроном, срок ее службы более 300 часов. Она специально разработана для стробоскопов.

В отличии от ИФК-120, лампа ИСШ-15 имеет больший ресурс и может работать на более высоких частотах. При отсутствии ИСШ-15, можно использовать ИФК-120.

Для удобства работы при установке угла опережения зажигания в автомобиле, в стробоскоп вмонтирован двух диапазонный аналоговый тахометр с растянутой шкалой.

Настройка стробоскопа

Если не допущены ошибки в печатной плате и исправны элементы схемы, то настраивать нечего не нужно. Стробоскоп сразу заработает. Для упрощения поиска возможных ошибок целесообразно плату собирать узлами с последующей их проверкой. Сначала запаивается микросхема TL494, ее обвязка С1, R1- R3, С4 и VD9. Подается напряжение и проверяется осциллографом наличие прямоугольных импульсов на выводах 9 и 10 микросхемы. Далее устанавливаются все детали, расположенные на схеме левее лампы, подается питание и замеряется напряжение на С5, которое должно быть 300-400 В. Дале запаиваются все остальные элементы. Подается питающее напряжение, при замыкании анода с катодом тиристора VD8 должна происходить вспышка лампы. Для проверки работы стробоскопа можно рядом с катушкой L1 пощелкать пьезоэлектрической зажигалкой. При каждом щелчке лампа стробоскопа должна вспыхивать.Если есть генератор, то вместо катушки нужно подключить его выход. Стробоскоп будет мигать с частотой генератора. 800 оборотов двигателя в минуту соответствует частоте генератора около 13 Гц.

Для перевода оборотов двигателя в частоту нужно число оборотов в минуту поделить на 60 (количество секунд в минуту), но гораздо удобнее воспользоваться табличными данными.

Как пользоваться стробоскопом

Для запуска стробоскопа в работу нужно при отключенном двигателе автомобиля продеть в кольцо индуктивного датчика стробоскопа снятый со свечи зажигания первого цилиндра высоковольтный провод и надеть его обратно на свечу. Подключить, соблюдая полярность, крокодилы к клеммам аккумулятора. Запустить двигатель автомобиля и включить стробоскоп выключателем. При этом должен засветиться светодиод VD11 и засверкать в такт искре лампа стробоскопа EL1.

Вспышки стробоскопа имеют высокую яркость, что позволяет видеть метку на маховике двигателя при установке угла опережения зажигания даже в солнечную погоду.

Ответы на вопросы посетителя сайта по настройке стробоскопа

Посетитель сайта Юрий, повторил схему стробоскопа и остался доволен его работой. От изготовления стробоскопа на базе сверхярких светодиодов его остановила цена светодиодов. При настройке стробоскопа у Юрия возник ряд вопросов, на которые я давал ответы в ходе переписки. Ответами на вопросы из переписки, с разрешения Юрия, с которыми могут столкнуться автолюбители, желающие повторить схему представленного стробоскопа, решил дополнить эту статью.

Вопрос Ответ
Можно ли заменить тиристор КУ103В тиристором ВТ169G? Да, можно заменить на ВТ169D или ВТ169G. Так как максимальное напряжение анод-катод у ВТ169 не менее 400 В, то резистор R6 можно не ставить, он установлен для защиты КУ103В.
При шунтировании анода и катода тиристора лампа вспыхивает, но при открытии-закрытии транзистора вручную лампа не реагирует. Тиристор или транзистор неправильно запаян или неисправен. Номиналы резисторов не соответствуют схеме.
Для выявления причины нужно отключить от управляющего электрода тиристора все элементы. В таком случае тиристор должен быть закрыт. Если к управляющему электроду присоединить через резистор по схеме R7 номиналом 27 кОм, то тиристор должен открываться. Если открывается, то виноват транзистор. Если тиристор не открывается, то можно уменьшить номинал резистора вплоть до 1 кОм, если открыть его, таким способом не удается, значит, тиристор неисправен.
Тиристор исправен, при прикосновении к управляющему электроду тиристора лампа вспыхивала однократно, получалось как сенсорное. Мне не понятно как закрывается тиристор, возможно, он запирается потенциалом управляющего электрода? Тиристор сам закрывается только тогда, когда напряжение анод-катод станет меньше определенного для каждого типа тиристора. Поэтому, когда конденсатор С6 разрядится, тиристор сам закроется. Резистор R8 выполняет функцию защиты транзистора от возможных высоковольтных импульсов и одновременно предотвращает случайное открытие тиристора от этих же импульсов.
На конденсаторе я добился напряжения 400 В при частоте генерации 200 кГц (поставил полевые транзисторы как указано в статье) но при емкости С5 - 1 мкФ яркость вспышки незначительна (лампа ИФК-120), при увеличении С5 до 10 мкФ стало слепить. Понимаю, что увеличение емкости приведет к неполному ее заряду на высоких оборотах, какую емкость поставить? По поводу высокого напряжения, его можно поднять хоть до киловольта, намотав больше витков вторичной обмотки, при этом яркость вспышки возрастет соответственно. Но величина напряжения не должна превышать допустимого для лампы. Поэтому лучше намотать больше витков, чем увеличивать емкость, а емкость уже подобрать исходя из максимальных оборотов, которые нужно контролировать.
По паспорту лампа ИФК-120 номинальное напряжение 300±20 В, т.е. не стоит увеличивать напряжение более имеющихся уже 400 В? Не стоит, так как повышенное напряжение может вызвать самопроизвольные вспышки лампы.
Из характеристик тиристора BT169G - отпирающее управляющее напряжение 0,5-0,8 В , т.е. когда транзистор VT3 открыт схема должна обеспечивать напряжение на его коллекторе относительно земли менее 0,5 В чтобы тиристор оставался закрытым? Да.
При закрытом транзисторе соответственно напряжение на его коллекторе и на управляющем электроде тиристора должно превысить 0,5 В, но не более 0,8 В дабы не спалить управляющий переход тиристора? Да, в цепи управляющего электрода тиристора стоит резистор R7, который ограничит величину тока, тем самым, исключая возможность увеличения напряжения более 0,8 В.
Играет ли роль какой стороной будет надеваться ферритовое кольцо на высоковольтный провод, или для этого и установлен в схеме VD10? Не играет, диод для этого и стоит.
Есть ли смысл заменить VT10 на полевой транзистор? В данном случае в этом нет необходимости, полевые транзисторы боятся статического электричества и без необходимости их лучше не применять.
Изменения, которые внес Юрий при повторении схемы стробоскопа. Лампу EL1 ИСШ-15 заменил на ИФК-120. Транзисторы VT1 и VT2 типа КТ817Б заменил полевыми IRFZ44N, VT3 типа КТ3102 на BC547. Тиристор КУ103В на ВТ169G. Резистор R8 c 820 Ом увеличил до 2 кОм, конденсатор С5 увеличил до 10 мкФ.

Отзыв Юрия о работе стробоскопа сделанного своими руками: «Работа стробоскопа проверена на автомобиле, работает отлично, яркость вспышки великолепная!!!»

как пользоваться, настройки угла опережения

Правильная настройка угла опережения зажигания (УОЗ) — это один из основных аспектов регулировки, позволяющий добиться правильной работы двигателя. Из-за неверно выставленного УОЗ мотор будет работать с перебоями, а в некоторых случаях и вовсе не будет запускаться. Для регулировки можно использовать стробоскоп. Как соорудить стробоскоп для установки зажигания своими руками — узнайте из этого материала.

Описание стробоскопа

Как сделать простой стробоскоп для настройки УОЗ на светодиодах, из каких элементов будет состоять схема девайса? Сначала рассмотрим основные характеристики устройства.

Рабочая схема

Основные составляющие элементы на примере вышеописанной схемы:

  1. Из переключателя SA1, диодного элемента VD1 и конденсаторного устройства С2 состоит цепь питания. Диод применяется для защиты других составляющих частей от ошибочной перемены полярности. Непосредственно сам конденсатор применяется для блокировки возможных помех, таким образом предотвращая выход из строя триггера. Предназначение переключателя SA1 заключается в активации и деактивации питания.
  2. Не менее важной составляющей является входная цепь, в состав которой входят контроллер, резисторные элементы R1 и R2 и конденсаторное устройство С1. Роль контроллера здесь выполняет зажим девайса, который зовется крокодилом, он фиксируется на высоковольтном проводе первого цилиндра. Если подключение будет правильным, то вышеописанные элементы образуют простую дифференциальную цепь.
  3. Схема триггера. Эта составляющая состоит из двух одиночных вибраторов, применяющихся для образования сигнала нужной частоты на выходе. Эти компоненты выполняют функцию частотозадающих.
  4. На резисторных элемента R5-R9 изготовляется выходной каскад, также для этой цели применяются транзисторы VT1. VT2 и VT3. Эти устройства необходимы для увеличения выходного тока триггерной платы. Резисторное устройство R5 задает определенный ток базы транзисторного элемента под номером 1 (видео снял Максим Соколов).

Принцип действия

Девайс для выставления угла опережения работает от встроенного аккумулятора либо автомобильной батареи. При активации переключателя первым начинает работать триггер. На выходах 2 и 12 платы происходит образование повышенного потенциала, а низкий формируется на контактах 1 и 13. В этот момент конденсаторные детали С3 и С4 получают питание от резисторов.

Сигнал с контроллера идет через дифференциальную цепь и в конечном счете подается на вход DD1.1. Поскольку он является одновибратором, в результате это способствует переключению девайса. Затем в схеме осуществляется переразряд С1, что опять же, способствует переключению триггера.

Элемент DD1.1 будет реагировать на импульсы, подающиеся с контроллера, таким образом формируя новые прямоугольные импульсы на первом выводе. В случае со вторым одновибратором DD1.2 принцип действия будет идентичным — благодаря этому устройству длительность импульса на контакте 13 уменьшается в 10 раз. Этот элемент функционирует под нагрузкой, подающейся с усилительного каскада транзисторов, которые открываются на время импульса. Благодаря резисторным компонентам R6, R7 и R8 ток ограничивается, его величина в общей сложности должна быть не выше 0.8 ампер.

Значение тока не высокое, это обусловлено следующими факторами:

  • длительность импульса составляет не больше 1 сек;
  • обычно для настройки УОЗ автовладельцам требуется не больше 10 минут, за такое время кристаллы не перегреются;
  • диоды, использующиеся сегодня, обладают более улучшенными характеристиками и особенностями, если сравнивать с устройствами, применявшимися более 10 лет назад.

Печатная плата и детали сборки

Для того, чтобы соорудить своими руками стробоскоп, потребуется плата со всеми необходимыми элементами.

В качестве примера:

  1. На рассматриваемой нами плате функцию диода выполняет контроллер КД2999В. В принципе, можно использовать любой другой, только нужно учитывать, что диодный элемент должен иметь минимальное падение напряжения.
  2. Также используются конденсаторы. Важно, чтобы они были рассчитаны на 0.068 мкФ. Что касается основного конденсаторного устройства С1, то он представляет собой высоковольтную деталь, напряжение на которой составляет 400 В.
  3. Триггерное устройство — ТМ2 — обладает отличной устойчивостью к возможным помехам.
  4. Необходимо, чтобы используемые транзисторы VT1, а также VT2 имели большой показатель усиления.
  5. Что касается диодов, отмеченных символами HL1-HL9, то они должны иметь максимальную яркость, а также желательно, чтобы угол рассеивания был небольшим. Диодные компоненты монтируются на отдельной схеме, их количество должно составить 3 в ряду.

Нюансы настройки устройства

Прежде чем использовать самодельный стробоскоп на авто, его надо правильно настроить. Изначально следует осуществить регулировку подстроечного резисторного компонента, это даст возможность обеспечить нужный визуальный эффект. Во время перемещения регулятора вы можете увидеть, что из-за падения импульса освещение меток будет неэффективным, а если импульс будет слишком высоким, то освещение будет размытым. На данном этапе вам надо правильно отрегулировать эффективность вспышек света (видео снял Serj ZP).

Установка УОЗ стробоскопом

Как пользоваться самодельным девайсом для регулировки УОЗ:

  1. Для начала следует завести мотор и прогреть его до рабочей температуры. Для этого дайте поработать агрегату на холостых оборотах.
  2. Затем вам надо будет подсоединить самодельное устройство к источнику питания. Это может быть либо встроенный аккумулятор, либо аккумуляторная батарея автомобиля.
  3. Далее, к жиле цилиндра 1 следует подсоединить медный датчик, для этого намотайте его на жилу.
  4. После этого диодную лампочку следует направить на метку, нанесенную на корпус распределительного механизма.
  5. Когда эти действия будут выполнены, вам нужно найти неподвижную точку, она расположена на шкиве маховика.
  6. Для того, чтобы обеспечить совпадение этих точек, нужно вращать корпус распределительного устройства. А когда точки совпадут, корпус нужно зафиксировать в этом положении. При совпадении точек диоды должны загореться.

Как самостоятельно изготовить прибор?

На сегодняшний день существует множество различных вариантов схем для изготовления стробоскопа. Мы рекомендуем ознакомиться с одним из самых простых и наименее затратных с финансовой точки зрения способов изготовления.

Для его реализации вам потребуются следующие составляющие:

  • транзисторное устройство КТ315;
  • тиристорный элемент КУ112А, а также резисторные компоненты, рассчитанные на 0.125 Вт;
  • диодные лампочки или фонарик на светодиодах, который будет использоваться в качестве корпуса, при этом количество диодных элементов должно быть не меньше 6 штук;
  • конденсаторные устройства С1;
  • V2 на схеме — это низкочастотный диодный компонент;
  • также вам потребуется реле, его индекс должен составлять RWH-SH-112D;
  • кабель питания, длина его должна составить не менее одного метра;
  • зажимы;
  • также понадобится кусочек медного провода длиной примерно 10 см.

Все эти составляющие можно купить в любом тематическом магазине или на радиорынке.

Как соорудить такое устройство самостоятельно:

  1. Для начала на задней стороне подготовленного корпуса следует дрелью просверлить дырку, через нее вы уложите кабель питания.
  2. Затем к концам приготовленных шнуров необходимо подпаять подготовленные зажимы. Желательно заранее отметить на них, какой будет плюсовым, а какой — отрицательный, будет лучше, если цвета зажимов будут разными.
  3. Сам датчик монтируется слева или справа на корпусе. На боковой части корпуса надо проделать еще одно отверстие, оно будет использоваться для укладки шнура к контакту Х1.
  4. Затем к основной жиле кабеля следует подпаять подготовленный кусок медной проволоки. Данный провод считается одним из основных, поскольку он будет использоваться в качестве датчика девайса.
  5. Остается только заизолировать соединения изолентой или термотрубками.

Фотогалерея «Собираем стробоскоп своими руками»


Заключение

Как видите, в целом соорудить такой девайс — не проблема. Достаточно иметь определенные знания в области электроники и следовать действиям, описанным в инструкции. Если в ходе сборки вы допустите ошибки, то возможно, устройство будет работать некорректно. Если у вас нет опыта в изготовлении подобных устройств, то возможно, есть смысл задуматься над покупкой нового стробоскопа.

Видео «Наглядная инструкция по регулировке УОЗ стробоскопом»

Что нужно знать об эксплуатации данного девайса, и какие нюансы следует учитывать при настройке — узнайте из ролика (видео снято Владиславом Чиковым).

Понравилась статья? Поделиться с друзьями:

В России должен появиться новый вид мигалок

Федеральная служба охраны (ФСО), охраняющая высших чиновников и других лиц по решению президента, хочет самостоятельно сопровождать кортежи охраняемых объектов на дорогах. Это следует из проекта постановления правительства, опубликованного службой на портале проектов нормативных актов в четверг.

Зачем ФСО стробоскопы

В пояснительной записке к проекту необходимость изменения правил дорожного движения объясняется стремлением ФСО повысить уровень транспортного обслуживания и обеспечить безопасность объектов государственной охраны.

Согласно действующим правилам дорожного движения (ПДД) автомобили без мигалок могут отступать от ПДД, если их сопровождает машина с нанесенными на поверхность цветографическими схемами (к таким относятся машины ГИБДД, «скорой помощи» и т. д.). Как правило, кортежи, в которых находятся охраняемые ФСО люди, сопровождает ГИБДД, хотя все распоряжения во время движения отдают сотрудники ФСО, говорит высокопоставленный чиновник. ФСО просит приравнять свои автомобили к спецтранспорту и дать преимущества на дороге также охраняемым ею машинам.

Цветографические схемы на автомобилях ФСО отсутствуют, подтверждает координатор Общества синих ведерок Петр Шкуматов. Они и не появятся, следует из предложенного ФСО проекта: в качестве опознавательных знаков служба планирует использовать «фонари с огнями синего цвета, работающие в мигающем режиме», в передних частях своих автомобилей. Это условный опознавательный знак ФСО, который присвоен службе правительством в 2008 г. Машины с такими фонарями и те, кого они сопровождают, получат право нарушать целый ряд ПДД: в частности, разделы о сигналах светофора, скорости движения, правилах обгона, остановки, проезда перекрестков и т. д. Остальные водители должны будут уступать таким машинам дорогу, их также нельзя будет обгонять, следует из проекта ФСО.

Опознавательный знак ФСО фактически представляет собой стробоскоп – мигалку, которая может размещаться за решеткой радиатора, поясняет Шкуматов. Сейчас стробоскоп не относится к числу спецсигналов и теоретически может быть использован на любом автомобиле, отмечает эксперт. По его мнению, инициатива ФСО – попытка узаконить новый, третий вид мигалок. «Попытка приравнять эти новые мигалки ФСО к автомобилям с цветографическими схемами вызовет колоссальную путаницу на дороге. Ведь не только ФСО получит право беспрепятственного проезда, но и те, кого они сопровождают, а как люди поймут, что автомобиль ФСО кого-то сопровождает? Да никак!» – убежден эксперт. При этом наказание за непропуск сопровождаемых ФСО автомобилей может быть суровым – до лишения прав, отмечает Шкуматов. Ради безопасности движения ФСО было бы правильнее нанести на свои автомобили цветографические схемы, она этого не делает не из-за требований секретности, а из эстетических соображений, считает Шкуматов.

Предложение ФСО объяснимо – у машины этой службы может не быть обычной мигалки, чтобы она не привлекала внимание гражданских лиц, но и со стробоскопами она должна пользоваться теми же правами преимущественного проезда, что и машины с мигалками, считает депутат Госдумы Вячеслав Лысаков.

Заец светодиодный автомобильный стробоскоп. Стробоскоп на лазерной указке для установки начального момента зажигания топлива. Особенности заводских стробоскопов и принцип их работы

Автолюбители знают, какое значение имеет правильная установка начального момента зажигания топлива в карбюраторных двигателях для хорошей езды. Предлагаемым прибором можно не только устанавливать начальный момент зажигания на оборотах холостого хода, но и найти неработающую свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регулятора угла опережения момента зажигания до 3000 оборотов в минуту. Большая частота просто опасна для двигателя, работающего без нагрузки. Схема стробоскопа дана на рисунке 1.

Импульсы с высоковольтного провода через дифференцирующую цепочку C1, R2 и резистор R1 запускают ждущий одновибратор на элементах DD1.1, 1.2. Импульсы одновибратора, длительностью около 1,5 миллисекунды, проходят через ключевой каскад на транзисторах VT1, VT2 и включают светодиод лазерной указки. Лазерная указка используется с расширяющей в линию насадкой. Это может быть насадка с изображением человека, динозавра, рыбы или птицы – главное, чтобы изображение напоминало линию. При солнечной погоде, но в тени, можно использовать указку и без насадки, направляя луч только на подвижную метку. Без насадки яркость лазерного луча увеличивается. Неподвижная метка на корпусе двигателя при солнечном освещении хорошо видна.

Печатная плата стробоскопа дана на рисунке 2 для варианта с применением микросхемы с планарными выводами – а и микросхемы с выводами в корпусе DIP-14 – б. Цифры под платой обозначают места установки резисторов с номером, соответствующим схеме на рисунке1. Тонкими линиями обозначены проводники со стороны установки микросхемы. С этой же стороны в отверстия (Э-К-Б) устанавливается транзистор VT1. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Резистор R3, для варианта с микросхемой с планарными выводами, так же можно поставить с этой стороны печатной платы. Печатная плата разработана так, чтобы она поместилась в батарейный отсек лазерной указки. Входная цепь (C1,R1,R2) размещена на торце деревянной бельевой прищепки (рис.3б).

Работу платы сначала проверьте на двигателе с любым светодиодом, подключив его в соответствующей полярности вместо лазера.

Указку можно разобрать двумя способами – выдавливанием со стороны батарейного отсека или вытаскиванием со стороны насадки. Выкручивается насадка, и под нее устанавливается подходящее кольцо толщиной 1-2 мм так, чтобы кольцо упиралось в корпус. Затем вкручивается насадка, постепенно выпрессовывая корпус с лазером. Если надо, операция повторяется с кольцом большей толщины. Можно обойтись без колец, подкладывая под насадку отвертку, но тогда повреждаются края алюминиевого корпуса указки. Вторым способом под крышку батарейного отсека подкладывается гайка М5, М4 или любой другой круглый плотный предмет. Постепенно, закручивая крышку, выдавливаем корпус с лазером. Здесь надо следить за тем, чтобы не повредить кнопку включения лазера. Когда освободится кнопка, ее надо вытащить из корпуса. Этим способом разборки указки нужно пользоваться ОСТОРОЖНО, не прилагая больших усилий, так как можно повредить лазер.

В разобранной указке выпаивается кнопочный выключатель (рис.4).

Плата укорачивается бокорезами так, чтобы осталась одна полоска печатного проводника, которая использовалась выключателем. Здесь надо работать аккуратно, чтобы не повредить резистор поверхностного монтажа на 68-82 Ом. Если вы его все-таки повредили – не беда. Увеличьте номинал резистора R5 до 270 Ом, а проводники, где стоял резистор поверхностного монтажа, закоротите. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Конденсатор С1 лучше взять типа КТ – трубчатый, так как они рассчитаны для работы с большим напряжением. Под микросхему 564ЛЕ5 и транзистор КТ815 подложите изолирующие прокладки из бумаги или целлофана. Собранную плату проверьте, вставив ее в цилиндр корпуса указки. Внутрь корпуса, где будет стоять плата, вставьте целлофан, если нет штатного. После проверки платы на свободное прохождение в корпус указки, можно спаять указку и плату в монолит медным проводом, пропущенным через отверстия установки кнопочного выключателя. Можно соединить плату и указку проводом МГТФ-0,07. Обязательно припаяйте провод плюса питания на печатный проводник возле лазера, идущий на корпус, место пайки показано на рисунке 4. Вставьте плату и запрессуйте указку в корпус.

Провода питания необходимой длины снабдите зажимами типа «крокодил» с маркировками или разъемом, входящим в разъем штатной переносной лампы-подсветки. Если подключение к разъему лампы-подсветки не однозначно, то в разрыв плюсового провода надо поставить любой диод плюсом к разъему для защиты от переполюсовки. Провод, идущий на зажим к высоковольтному проводу, должен быть экранированным. Для безопасности работы с включенным двигателем, зажим к высоковольтному проводу сделан из деревянной прищепки (рис.3). Из пачки деревянных прищепок ни одной не нашлось с совпадающими отверстиями, поэтому лучше просверлить новое отверстие Ф6 мм ближе к краю губок. Отверстие легко просверлить, если прищепку зажать в тисках. Одна из губок прищепки оборачивается жестью, шириной не более 3 мм или несколькими витками луженого провода. С наружной стороны прищепки концы жести спаиваются вместе. Сюда же припаивается конденсатор С1. Экранированный провод крепится на прищепке медной скобой. Высоковольтные провода на автомобиле могут иметь трещины, которые визуально не обнаруживаются. Если токосъемник-прищепка будет установлена на провод с трещиной, то произойдет пробой и стробоскоп сгорит. Поэтому необходимо токосъемник обвернуть несколькими витками изоленты или залить герметиком.

Проверьте стробоскоп на работоспособность (сначала со светодиодом!) и загерметизируйте корпус со стороны платы и проводов, а также делитель на прищепке силиконовым герметиком. Чтобы насадка лазера не забилась грязью в «бардачке» автомобиля, подберите на нее крышку от медицинских пузырьков.

Работать со стробоскопом просто. Перед работой протрите белую краску на метках корпуса и шкива коленвала. Если метки не окрашены, то покрасьте их белой краской – это пригодится в будущем. Включите хорошо прогретый двигатель на холостых оборотах (600-800). Подключите зажимы напряжения питания. Зажмите прищепкой высоковольтный провод первой свечи и направьте лазер на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика. Если установка момента зажигания на вашем автомобиле нарушена, то подвижная метка может находиться далеко от неподвижной метки. Вращением корпуса распределителя зажигания добейтесь совпадения подвижной (на шкиве коленвала) и неподвижной меток. Зафиксируйте распределитель в этом положении. Далее можно кратковременно увеличить обороты и наблюдать расхождение меток. При увеличении оборотов зажигание должно быть более раннее, для проверки которого существуют две другие неподвижные метки, расположенные через 5 градусов опережения зажигания. На 3000 оборотов в минуту угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15-17 градусов. Не увеличивайте обороты более 3000! Это опасно для двигателя и лазерной указки! Для проверки работы свечей зажигания поочередно зажимайте прищепкой высоковольтные провода. Если свеча пробивает на корпус или происходит пропуск зажигания, то вспышки лазера будут меньшей частоты. ВНИМАНИЕ! Не направляйте луч лазера в глаза! Не забудьте, что корпус стробоскопа находится под напряжением плюс 13,8 вольт (или другое напряжение, выдаваемое регулятором), поэтому нельзя класть его на корпус автомобиля с включенным лазером, если корпус стробоскопа не изолирован.

Литература.

Беляцкий П. Светодиодный автомобильный стробоскоп. - Радио, 2000, 9, с. 43.

Н. ЗАЕЦ, пос. Вейделевка Белгородской обл.

Автомобилисты знают, насколько важна правильная установка момента зажигания топлива в цилиндрах карбюраторного двигателя. Для этого используют стробоскопы. В статье П. Беляцкого "Светодиодный автомобильный стробоскоп" ("Радио", 2000, № 9) описан простой прибор с фонарем в виде сборки из ярких светодиодов вместо импульсной фотолампы.
Автор этой статьи предлагает собрать прибор на базе лазерной указки.

Предлагаемый вниманию читателей стробоскопический прибор позволяет не только установить оптимальный угол опережения зажигания (О3) на холостых оборотах двигателя, но и найти неисправную свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регуляторов угла О3 на частоте вращения коленчатого вала до 3000 об/мин(большая частота опасна для двигателя, ра ботающего без нагрузки). Прибор не рассчитан для использования на станциях техобслуживания, но может оказать неоценимую услугу автолюбителю, застрявшему в пути из-за сбоев в системе зажигания.

Схема стробоскопа изображена на рис. 1.


Импульсы с высоковольтного свечного провода, пройдя через входной узел, состоящий из дифференцирующей цепи С1, R2 и ограничительного резистора R1, запускают одновибратор, собранный на элементах DD1.1, DD1.2. Выходные импульсы одновибратора длительностью около 0,15 мс поступают на базу составного транзистора VT1VT2, работающего усилителем тока. В коллекторную цепь транзистора включена лазерная указка BL1, служащая нагрузкой усилителя. Поскольку выходные импульсы одновибратора имеют высокий уровень, на время их действия составной транзистор открывается и лазер указки формирует световые вспышки.

Указка рассчитана на напряжение питания 4,5 В, а в стробоскопе она работает от бортовой сети с напряжением 13,8 В, поэтому длительность выходных импульсов одновибратора не должна превышать 0,15 мс - значение подобрано экспериментально и стоило нескольких "сгоревших" лазеров. При длительности импульса более 0,15 мс средняя рассеиваемая лазером мощность достигает предельно допустимой и резко повышается риск сжечь указку, а при меньшей метка на шкиве коленвала становится зрительно "трудноуловимой". Необходимо также помнить, что и частота вспышек более 100 Гц (соответствует частоте вращения коленчатого вала двигателя 3000 об/мин опасна для указки, работающей при повышенном напряжении.

Конструктивно стробоскоп состоит из датчика импульсов зажигания, прицепляемого к свечному проводу первого цилиндра двигателя, и собственно указки, внутрь которой помещены все остальные детали. Датчик соединен с указкой экранированным кабелем длиной 50 см.

Основой датчика импульсов зажигания служит бельевая прищепка, на боковой грани которой размещены детали С1, R1, R2 входного узла. На одну из половин прищепки в месте, где расположено рабочее полуотверстие, наматывают виток ленты шириной не более 3 мм из жести или тонколистовой меди в виде бандажа (рис. 2).


К нему припаивают вывод конденсатора С1. Вывод резистора R1 припаивают к центральному проводу соединительного кабеля, а резистора R2 - к экрану. Кабель проволочным бандажом прикрепляют к ручке прищепки. Сверху детали входного узла следует покрыть силиконовым герметиком и защитить от ударов планкой из текстолита (на рисунке не показана).

Для установки деталей стробоскопа указку нужно сначала разобрать. Отвинтив насадку, устанавливают под нее кольцо-съемник с осевой толщиной 1...2 мм так, чтобы оно упиралось в край цилиндрического кожуха. Затем навинчивают с усилием насадку, постепенно выпрессовывая "начинку" из кожуха. Если необходимо, операцию повторяют с кольцом большей толщины.

Попытки разобрать указку без кольца-съемника приводят, как правило, к повреждению кромки кожуха, изготовленного из мягкого алюминиевого сплава. Выдавливание «начинки» из кожуха со стороны батарейного отсека, как показала практика, также сопряжено с большим риском повреждения указки.

С платы разобранной указки (рис. 3) выпаивают кнопочный выключатель и боковыми кусачками аккуратно, чтобы не повредить резистор, укорачивают ее до штриховой линии (печатные проводники показаны серыми).


Если резистор все-таки оказался поврежденным, не беда, достаточно выводы его замкнуть перемычкой, а сопротивление резистора R5 на схеме (см. рис. 1) увеличить до 270 Ом.

Детали одновибратора и выходного усилителя тока размещают на печатной плате из фольгированного с обеих сторон стеклотекстолита толщиной 0,5 мм. Чертеж платы показан на рис. 4 (а - сторона печати; б - сторона деталей)


Оба транзистора и конденсатор С2 припаивают со стороны печати непосредственно к печатным площадкам.

Отверстия под микросхему должны быть такими, чтобы ее можно было смонтировать возможно ближе к плате - так будет легче вставить плату в кожух указки при сборке. Вывод 7 микросхемы и один из выводов резистоpa R3 необходимо пропаять с обеих сторон платы. Поскольку плата довольно «тесная», постарайтесь заранее продумать последовательность монтажа деталей, чтобы не пришлось потом отпаивать уже установленные. Микросхему монтируйте в последнюю очередь. Контактные площадки квадратной формы на обеих сторонах платы необходимо соединить отрезками медного провода и пропаять. Под транзистор VT2 следует вложить тонкую изоляционную прокладку.

Прежде чем соединять собранную плату стробоскопа с подготовленной платой указки, целесообразно проверить его работу со светодиодом вместо лазера. Светодиод (например, АЛ307Б)временно припаивают анодом к плюсовому выводу питания, а катодом - к резистору R5.

Для того чтобы можно было наладить стробоскоп в лабораторных условиях, целесообразно собрать по схеме на рис. 5 испытательный мультивибратор.


Он вырабатывает короткие импульсы высокого уровня с частотой повторения, регулируемой переменным резистором R2.

Импульсы подают на вход стробоскопа и подбирают резистор R3 таким, чтобы длительность выходных импульсов не превышала 0,15 мс.

После этого нужно убедиться, что собранная плата свободно входит в кожух указки.

К собранной плате припаивают три гибких вывода - общий, входной (к резистору R1 датчика) и плюсовой питания (+13,8 В), прикладывают ее к плате указки соединительными фольговыми площадками наружу, в оба сборочные отверстия плат вставляют по отрезку медного провода диаметром 0,5 мм и пропаивают. Не забудьте отдельным проводником соединить плюсовой вывод лазера на плате указки (см. рис. 3) с плюсовым проводом питания на плате стробоскопа. Еще раз проверьте, войдет ли конструкция в кожух указки.

Если все в порядке, внутрь кожуха вставляют свернутый в трубку изолятор из тонкой жесткой пластиковой пленки и вводят в него лазер с платой. Торец с выводами указки заливают герметиком. Гибкие выводы питания оснащают зажимами "крокодил" с маркировкой полярности или разъемом для подключения к розетке переносной лампы.

Во всех случаях целесообразно в разрыв плюсового провода ввести диод, защищающий стробоскоп от случайного включения стробоскопа в обратной полярности (на схеме рис. 1 этот диод не показан). Подойдет любой диод на обратное напряжение не менее 50 В и средний выпрямленный ток не менее 100 мА. Смонтировать диод можно вблизи зажима "крокодил".

Кроме этого, учитывая, что кожух лазерной указки электрически соединен с плюсовым проводом питания, ее необходимо тщательно изолировать и во время пользования не допускать соприкосновения с деталями автомобиля. Тем не менее работать со стробоскопом будет проще, если последовательно с защитным диодом включить миниатюрный плавкий предохранитель на ток 0,16 А (на схеме тоже не показан).

Для работы стробоскопа датчик-прищепку цепляют на свечной высоковольтный провод первого цилиндра двигателя. Запускающие импульсы поступают на прибор через емкость между высоковольтным проводом и бандажом в рабочем отверстии датчика. Емкость должна быть минимально необходимой для устойчивого запуска.

Если емкость выбрать чрезмерно большой, амплитуда запускающего импульса при неблагоприятных обстоятельствах может превысить допустимую для микросхемы и стать причиной ее порчи. Поэтому в начале датчик следует устанавливать на провод через сухую прокладку толщиной 1 мм из полиэтилена или ПВХ. Если запуска стробоскопа не происходит - нет мигающего свечения лазера на самых малых оборотах двигателя, - прокладку надо заменить более тонкой.

Работать со стробоскопом удобнее, когда его световое пятно имеет вытянутую форму - это облегчает фиксацию обеих меток в поле зрения. Поэтому на указку надевают одну из прилагающихся насадок, вытягивающих пятно в линию. При работе в светлое время дня, но в тени, можно обойтись и без насадки (яркость пятна будет больше), направляя луч только на подвижную метку. Неподвижная метка на корпусе будет в этих условиях и так хорошо видна. Чтобы защитить лазер и насадку от грязи и пыли при хранении, подберите для нее подходящий чехол из пластика.

Возможно, кому-то покажется легче собрать одновибратор стробоскопа на миниатюрной микросхеме К564ЛЕ5.

Чертеж платы для такого варианта показан на рис. 6.


Здесь на стороне деталей (рис. 6,б) припаяны только конденсатор С2 и транзистор VT2, остальные детали - со стороны печати. Кроме этого, с входным узлом соединен вывод 2 микросхемы.

Перед работой со стробоскопом протрите белую краску на метках на корпусе и шкиве коленчатого вала двигателя автомобиля. Если метки не окрашены, обязательно надо это сделать - очень пригодится в будущем. Хорошо прогретый двигатель переведите на холостые обороты 600...800 об/мин. Подключите зажимы питания стробоскопа так, чтобы его питающие провода не соприкасались с высоковольтными. Установите датчик на высоковольтный провод первой свечи и направьте луч лазера на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика - яркость пятна в этом месте увеличивается из-за отражения от белой краски. Если метка не окрашена, яркость отраженного луча, наоборот, уменьшится, но это труднее зафиксировать, особенно при ярком освещении.

Убедиться в том, что найденное место - действительно метка, можно, немного изменив частоту вращения вала двигателя, при этом метка смещается вперед или назад по ходу вращения шкива.

Если установка момента зажигания на вашем автомобиле нарушена, подвижная метка может находиться далеко от неподвижной. На холостых оборотах метка на шкиве маховика должна находиться напротив средней неподвижной метки, т. е. угол опережения зажигания должен быть равен 5 град. Вращением корпуса прерывателя-распределителя зажигания добейтесь совпадения подвижной и неподвижной меток и зафиксируйте его в этом положении.

Кратковременно увеличивают обороты и наблюдают расхождение меток. При увеличении частоты вращения коленчатого вала зажигание должно становиться более ранним. На частоте вращения 3000 об/мин угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15...17 град. .

Не увеличивайте частоту вращения сверх 3000 об.мин - это опасно и для двигателя, и для лазерной указки.

Ни в коем случае не направляйте луч лазера в глаза!

В стробоскопе использована лазерная указка мощностью до 1 мВт. В последнее время в продаже появились лазерные указки в пять раз более яркие. Они имеют такие же размеры, и их применение в автомобильном стробоскопе предпочтительнее.

ЛИТЕРАТУРА
1. Беляцкий П. Светодиодный автомобильный стробоскоп. - Радио, 2000, № 9, с. 43, 44.
2. Ершов Б. В., Юрченко М. А. Легковые автомобили ВАЗ. - Киев. "Вища школа". 1983._
[email protected]

Стробоскоп на лазерной указке для установки
начального момента зажигания топлива

Автолюбители знают, какое значение имеет правильная установка начального момента зажигания топлива в карбюраторных двигателях для хорошей езды. Предлагаемым прибором можно не только устанавливать начальный момент зажигания на оборотах холостого хода, но и найти неработающую свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регулятора угла опережения момента зажигания до 3000 оборотов в минуту. Большая частота просто опасна для двигателя, работающего без нагрузки. Схема стробоскопа приведена на рисунке 1.

Импульсы с высоковольтного провода через дифференцирующую цепочку C1,R2 и резистор R1 запускают ждущий одновибратор на элементах DD1.1, DD1.2. Импульсы одновибратора, длительностью около 1,5 миллисекунды, проходят через ключевой каскад на транзисторах VT1, VT2 и включают светодиод лазерной указки. Лазерная указка используется с расширяющей в линию насадкой. Это может быть насадка с изображением человека, динозавра, рыбы или птицы √ главное, чтобы изображение напоминало линию. При солнечной погоде, но в тени, можно использовать указку и без насадки, направляя луч только на подвижную метку. Без насадки яркость лазерного луча увеличивается. Неподвижная метка на корпусе двигателя при солнечном освещении хорошо видна.

Печатная плата стробоскопа дана на рисунке 2 для варианта с применением микросхемы с планарными выводами √ а и микросхемы с выводами в корпусе DIP-14 √ б. Цифры под платой обозначают места установки резисторов с номером, соответствующим схеме на рисунке1. Тонкими линиями обозначены проводники со стороны установки микросхемы. С этой же стороны в отверстия (Э-К-Б) устанавливается транзистор VT1. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Резистор R3, для варианта с микросхемой с планарными выводами, так же можно поставить с этой стороны печатной платы. Печатная плата разработана так, чтобы она поместилась в батарейный отсек лазерной указки. Входная цепь (C1, R1, R2) размещена на торце деревянной бельевой прищепки (рис.3б).

Работу платы сначала проверьте на двигателе с любым светодиодом, подключив его в соответствующей полярности вместо лазера. Указку можно разобрать двумя способами √ выдавливанием со стороны батарейного отсека или вытаскиванием со стороны насадки. Выкручивается насадка, и под нее устанавливается подходящее кольцо толщиной 1-2 мм так, чтобы кольцо упиралось в корпус. Затем вкручивается насадка, постепенно выпрессовывая корпус с лазером. Если надо, операция повторяется с кольцом большей толщины. Можно обойтись без колец, подкладывая под насадку отвертку, но тогда повреждаются края алюминиевого корпуса указки. Вторым способом под крышку батарейного отсека подкладывается гайка М5, М4 или любой другой круглый плотный предмет. Постепенно, закручивая крышку, выдавливаем корпус с лазером. Здесь надо следить за тем, чтобы не повредить кнопку включения лазера. Когда освободится кнопка, ее надо вытащить из корпуса. Этим способом разборки указки нужно пользоваться ОСТОРОЖНО, не прилагая больших усилий, так как можно повредить лазер. В разобранной указке выпаивается кнопочный выключатель (рис.4).

Плата укорачивается бокорезами так, чтобы осталась одна полоска печатного проводника, которая использовалась выключателем. Здесь надо работать аккуратно, чтобы не повредить резистор поверхностного монтажа на 68-82 Ом. Если вы его все-таки повредили √ не беда. Увеличьте номинал резистора R5 до 270 Ом, а проводники, где стоял резистор поверхностного монтажа, закоротите. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Конденсатор С1 лучше взять типа КТ √ трубчатый, так как они рассчитаны для работы с большим напряжением. Под микросхему 564ЛЕ5 и транзистор КТ815 подложите изолирующие прокладки из бумаги или целлофана. Собранную плату проверьте, вставив ее в цилиндр корпуса указки. Внутрь корпуса, где будет стоять плата, вставьте целлофан, если нет штатного. После проверки платы на свободное прохождение в корпус указки, можно спаять указку и плату в монолит медным проводом, пропущенным через отверстия установки кнопочного выключателя. Можно соединить плату и указку проводом МГТФ-0,07. Обязательно припаяйте провод плюса питания на печатный проводник возле лазера, идущий на корпус, место пайки показано на рисунке 4. Вставьте плату и запрессуйте указку в корпус.

Провода питания необходимой длины снабдите зажимами типа ╚крокодил╩ с маркировками или разъемом, входящим в разъем штатной переносной лампы-подсветки. Если подключение к разъему лампы-подсветки не однозначно, то в разрыв плюсового провода надо поставить любой диод плюсом к разъему для защиты от переполюсовки. Провод, идущий на зажим к высоковольтному проводу, должен быть экранированным. Для безопасности работы с включенным двигателем, зажим к высоковольтному проводу сделан из деревянной прищепки (рис.3). Из пачки деревянных прищепок ни одной не нашлось с совпадающими отверстиями, поэтому лучше просверлить новое отверстие Ф6 мм ближе к краю губок. Отверстие легко просверлить, если прищепку зажать в тисках. Одна из губок прищепки оборачивается жестью, шириной не более 3 мм или несколькими витками луженого провода. С наружной стороны прищепки концы жести спаиваются вместе. Сюда же припаивается конденсатор С1. Экранированный провод крепится на прищепке медной скобой. Высоковольтные провода на автомобиле могут иметь трещины, которые визуально не обнаруживаются. Если токосъемник-прищепка будет установлена на провод с трещиной, то произойдет пробой и стробоскоп сгорит. Поэтому необходимо токосъемник обвернуть несколькими витками изоленты или залить герметиком.

Проверьте стробоскоп на работоспособность (сначала со светодиодом!) и загерметизируйте корпус со стороны платы и проводов, а также делитель на прищепке силиконовым герметиком. Чтобы насадка лазера не забилась грязью в ╚бардачке╩ автомобиля, подберите на нее крышку от медицинских пузырьков.

Работать со стробоскопом просто. Перед работой протрите белую краску на метках корпуса и шкива коленвала. Если метки не окрашены, то покрасьте их белой краской √ это пригодится в будущем. Включите хорошо прогретый двигатель на холостых оборотах (600-800). Подключите зажимы напряжения питания. Зажмите прищепкой высоковольтный провод первой свечи и направьте лазер на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика. Если установка момента зажигания на вашем автомобиле нарушена, то подвижная метка может находиться далеко от неподвижной метки. Вращением корпуса распределителя зажигания добейтесь совпадения подвижной (на шкиве коленвала) и неподвижной меток. Зафиксируйте распределитель в этом положении. Далее можно кратковременно увеличить обороты и наблюдать расхождение меток. При увеличении оборотов зажигание должно быть более раннее, для проверки которого существуют две другие неподвижные метки, расположенные через 5 градусов опережения зажигания. На 3000 оборотов в минуту угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15-17 градусов. Не увеличивайте обороты более 3000! Это опасно для двигателя и лазерной указки! Для проверки работы свечей зажигания поочередно зажимайте прищепкой высоковольтные провода. Если свеча пробивает на корпус или происходит пропуск зажигания, то вспышки лазера будут меньшей частоты. ВНИМАНИЕ! Не направляйте луч лазера в глаза! Не забудьте, что корпус стробоскопа находится под напряжением плюс 13,8 вольт (или другое напряжение, выдаваемое регулятором), поэтому нельзя класть его на корпус автомобиля с включенным лазером, если корпус стробоскопа не изолирован.

Литература: Беляцкий П. Светодиодный автомобильный стробоскоп. - Радио, 2000, 9, с. 43.

Автомобилисты знают, насколько важна правильная установка момента зажигания топлива в цилиндрах карбюраторного двигателя. Для этого используют стробоскопы. В статье П. Беляцкого "Светодиодный автомобильный стробоскоп " ("Радио", 2000, № 9) описан простой прибор с фонарем в виде сборки из ярких светодиодов вместо импульсной фотолампы.

Предлагаемый вниманию читателей стробоскопический прибор позволяет не только установить оптимальный угол опережения зажигания (ОЗ) на холостых оборотах двигателя, но и найти неисправную свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регуляторов угла 03 на частоте вращения коленчатого вала до 3000 мин-1 (большая частота опасна для двигателя, работающего без нагрузки). Прибор не рассчитан для использования на станциях техобслуживания, но может оказать неоценимую услугу автолюбителю, застрявшему в пути из-за сбоев в системе зажигания.

Схема стробоскопа изображена на рис. 1. Импульсы с высоковольтного свечного провода, пройдя через входной узел, состоящий из дифференцирующей цепи С1, R2 и ограничительного резистора R1, запускают одновибратор, собранный на элементах DD1.1, DD1.2. Выходные импульсы одновибратора длительностью около 0,15 мс поступают на базу составного транзистора VT1VT2, работающего усилителем тока. В коллекторную цепь транзистора включена лазерная указка BL1, служащая нагрузкой усилителя. Поскольку выходные импульсы одновибратора имеют высокий уровень, на время их действия составной транзистор открывается и лазер указки формирует световые вспышки.

Указка рассчитана на напряжение питания 4,5 В, а в стробоскопе она работает от бортовой сети с напряжением 13,8 В, поэтому длительность выходных импульсов одновибратора не должна превышать 0,15 мс - значение подобрано экспериментально и стоило нескольких "сгоревших" лазеров. При длительности импульса более 0,15 мс средняя рассеиваемая лазером мощность достигает предельно допустимой и резко повышается риск сжечь указку, а при меньшей метка на шкиве коленвала становится зрительно "трудноуловимой". Необходимо также помнить, что и частота вспышек более 100 Гц (соответствует частоте вращения коленчатого вала двигателя 3000 мин-1) опасна для указки, работающей при повышенном напряжении.

Конструктивно стробоскоп состоит из датчика импульсов зажигания, прицепляемого к свечному проводу первого цилиндра двигателя, и собственно указки, внутрь которой помещены все остальные детали. Датчик соединен с указкой экранированным кабелем длиной 50 см.

Основой датчика импульсов зажигания служит бельевая прищепка, на боковой грани которой размещены детали С1, R1, R2 входного узла. На одну из половин прищепки в месте, где расположено рабочее полуотверстие, наматывают виток ленты шириной не более 3 мм из жести или тонколистовой меди в виде бандажа (рис. 2). К нему припаивают вывод конденсатора С1. Вывод резистора R1 припаивают к центральному проводу соединительного кабеля, а резистора R2 - к экрану. Кабель проволочным бандажом прикрепляют к ручке прищепки. Сверху детали входного узла следует покрыть силиконовым герметиком и защитить от ударов планкой иг текстолита (на рисунке не показана).

Для установки деталей стробоскопа указку нужно сначала разобрать. Отвинтив насадку, устанавливают под нее кольцо-съемник с осевой толщиной 1...2 мм так, чтобы оно упиралось в край цилиндрического кожуха. Затем навинчивают с усилием насадку, постепенно выпрессовывая "начинку" из кожуха. Если необходимо, операцию повторяют с кольцом большей толщины.

Попытки разобрать указку без кольца-съемника приводят, как правило, к повреждению кромки кожуха, изготовленного из мягкого алюминиевого сплава. Выдавливание "начинки" из кожуха со стороны батарейного отсека, как показала практика, также сопряжено с большим риском повреждения указки.

С платы разобранной указки (рис. 3) выпаивают кнопочный выключатель и боковыми кусачками аккуратно, чтобы не повредить резистор, укорачивают ее до штриховой линии (печатные проводники показаны серыми). Если резистор все-таки оказался поврежденным, не беда, достаточно выводы его замкнуть перемычкой, а сопротивление резистора R5 на схеме (см. рис. 1) увеличить до 270 Ом.

Детали одновибратора и выходного усилителя тока размещают на печатной плате из фольгированного с обеих сторон стеклотекстолита толщиной 0,5 мм. Чертеж платы показан на рис. 4 (а - сторона печати; б - сторона деталей). Оба транзистора и конденсатор С2 припаивают со стороны печати непосредственно к печатным площадкам.

Отверстия под микросхему должны быть такими, чтобы ее можно было смонтировать возможно ближе к плате - так будет легче вставить плату в кожух указки при сборке. Вывод 7 микросхемы и один из выводов резистоpa R3 необходимо пропаять с обеих сторон платы. Поскольку плата довольно "тесная", постарайтесь заранее продумать последовательность монтажа деталей, чтобы не пришлось потом отпаивать уже установленные. Микросхему монтируйте в последнюю очередь. Контактные площадки квадратной формы на обеих сторонах платы необходимо соединить отрезками медного провода и пропаять. Под транзистор VT2 следует вложить тонкую изоляционную прокладку.

Прежде чем соединять собранную плату стробоскопа с подготовленной платой указки, целесообразно проверить его работу со светодиодом вместо лазера. Светодиод (например, АЛ307Б) временно припаивают анодом к плюсовому выводу питания, а катодом - к резистору R5.

Для того чтобы можно было наладить стробоскоп в лабораторных условиях, целесообразно собрать по схеме на рис. 5 испытательный мультивибратор. Он вырабатывает короткие импульсы высокого уровня с частотой повторения, регулируемой переменным резистором R2.

Импульсы подают на вход стробоскопа и подбирают резистор R3 таким, чтобы длительность выходных импульсов не превышала 0,15 мс.

После этого нужно убедиться, что собранная плата свободно входит в кожух указки.

К собранной плате припаивают три гибких вывода - общий, входной (к резистору R1 датчика) и плюсовой питания (+13,8 В), прикладывают ее к плате указки соединительными фольговыми площадками наружу, в оба сборочные отверстия плат вставляют по отрезку медного провода диаметром 0,5 мм и пропаивают. Не забудьте отдельным проводником соединить плюсовой вывод лазера на плате указки (см. рис. 3) с плюсовым проводом питания на плате стробоскопа. Еще раз проверьте, войдет ли конструкция в кожух указки.

Если все в порядке, внутрь кожуха вставляют свернутый в трубку изолятор из тонкой жесткой пластиковой пленки и вводят в него лазер с платой. Торец с выводами указки заливают герметиком. Гибкие выводы питания оснащают зажимами "крокодил" с маркировкой полярности или разъемом для подключения к розетке переносной лампы.

Во всех случаях целесообразно в разрыв плюсового провода ввести диод, защищающий стробоскоп от случайного включения стробоскопа в обратной полярности (на схеме рис. 1 этот диод не показан). Подойдет любой диод на обратное напряжение не менее 50 В и средний выпрямленный ток не менее 100 мА. Смонтировать диод можно вблизи зажима "крокодил".

Кроме этого, учитывая, что кожух лазерной указки электрически соединен с плюсовым проводом питания, ее необходимо тщательно изолировать и во время пользования не допускать соприкосновения с деталями автомобиля. Тем не менее работать со стробоскопом будет проще, если последовательно с защитным диодом включить миниатюрный плавкий предохранитель на ток 0,16 А (на схеме тоже не показан).


Для работы стробоскопа датчик-прищепку цепляют на свечной высоковольтный провод первого цилиндра двигателя. Запускающие импульсы поступают на прибор через емкость между высоковольтным проводом и бандажом в рабочем отверстии датчика. Емкость должна быть минимально необходимой для устойчивого запуска.

Если емкость выбрать чрезмерно большой, амплитуда запускающего импульса при неблагоприятных обстоятельствах может превысить допустимую для микросхемы и стать причиной ее порчи. Поэтому в начале датчик следует устанавливать на провод через сухую прокладку толщиной 1 мм из полиэтилена или ПВХ. Если запуска стробоскопа не происходит - нет мигающего свечения лазера на самых малых оборотах двигателя, - прокладку надо заменить более тонкой.

Работать со стробоскопом удобнее, когда его световое пятно имеет вытянутую форму - это облегчает фиксацию обеих меток в поле зрения. Поэтому на указку надевают одну из прилагающихся насадок, вытягивающих пятно в линию. При работе в светлое время дня, но в тени, можно обойтись и без насадки (яркость пятна будет больше), направляя луч только на подвижную метку. Неподвижная метка на корпусе будет в этих условиях и так хорошо видна. Чтобы защитить лазер и насадку от грязи и пыли при хранении, подберите для нее подходящий чехол из пластика.

Возможно, кому-то покажется легче собрать одновибратор стробоскопа на миниатюрной микросхеме К564ЛЕ5. Чертеж платы для такого варианта показан на рис. 6. Здесь на стороне деталей (рис. 6,б) припаяны только конденсатор С2 и транзистор VT2, остальные детали - со стороны печати. Кроме этого, с входным узлом соединен вывод 2 микросхемы.

Перед работой со стробоскопом протрите белую краску на метках на корпусе и шкиве коленчатого вала двигателя автомобиля. Если метки не окрашены, обязательно надо это сделать - очень пригодится в будущем. Хорошо прогретый двигатель переведите на холостые обороты 600...800 мин-1. Подключите зажимы питания стробоскопа так, чтобы его питающие провода не соприкасались с высоковольтными. Установите датчик на высоковольтный провод первой свечи и направьте луч лазера на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика - яркость пятна в этом месте увеличивается из-за отражения от белой краски. Если метка не окрашена, яркость отраженного луча, наоборот, уменьшится, но это труднее зафиксировать, особенно при ярком освещении.

Убедиться в том, что найденное место - действительно метка, можно, немного изменив частоту вращения вала двигателя, при этом метка смещается вперед или назад по ходу вращения шкива.

Если установка момента зажигания на вашем автомобиле нарушена, подвижная метка может находиться далеко от неподвижной. На холостых оборотах метка на шкиве маховика должна находиться напротив средней неподвижной метки, т. е. угол опережения зажигания должен быть равен 5 град. Вращением корпуса прерывателя-распределителя зажигания добейтесь совпадения подвижной и неподвижной меток и зафиксируйте его в этом положении.

Кратковременно увеличивают обороты и наблюдают расхождение меток. При увеличении частоты вращения коленчатого вала зажигание должно становиться более ранним. На частоте вращения 3000 мин-1 угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15... 17 град. .

Не увеличивайте частоту вращения сверх 3000 мин-1 - это опасно и для двигателя, и для лазерной указки. Ни в коем случае не направляйте луч лазера в глаза!

В стробоскопе использована лазерная указка мощностью до 1 мВт. В последнее время в продаже появились лазерные указки в пять раз более яркие. Они имеют такие же размеры, и их применение в автомобильном стробоскопе предпочтительнее.

Литература

  • Беляцкий П. Светодиодный автомобильный стробоскоп. - Радио, 2000. № 9, с. 43, 44.
  • Ершов Б. В., Юрченко М. А. Легковые автомобили ВАЗ. - Киев, "Вища школа", 1983.

Дополнение

"Автомобильный стробоскоп из лазерной указки" - под таким заголовком в "Радио", 2004, № 1, с. 45, 46 была опубликована статья Н. Заеца. Мне понравилась идея использования лазерной указки в качестве фонаря стробоскопа. Для тех, кто хотел бы повторить эту конструкцию, но не знает устройства указки, предлагаю познакомиться с ней подробнее.

На рисунке представлена "начинка" указки-брелока. Источником света является полупроводниковый излучающий кристалл 3, припаянный к массивному основанию, служащему теплоотводом 2. Теплоотвод прикреплен к плате 1, на которой смонтированы кнопка включения, токоограничительный резистор и пружинный контакт батареи питания. Теплоотвод с платой туго вставлены в прорезь втулки-держателя 4, на другом конце которой нарезана наружная и внутренняя резьба.

Свет от кристалла сильно рассеян и в тонкий луч его собирает линза 6. Положение линзы относительно кристалла можно регулировать резьбовой втулкой 7. Пружина 5 прижимает линзу к втулке.

Для использования указки в качестве осветителя стробоскопа лучше расфокусировать пучок света, ввернув втулку до упора (но не давите сильно!). В результате диаметр светового пятна на расстоянии 1 м увеличится примерно до 6 см. На меньшем расстоянии диаметр пятна будет меньше. Во всяком случае с более широким, чем точка, пятном "держать" метку на шкиве двигателя легче, да и опасность для зрения меньше при случайном попадании луча в глаза.

Во многих статьях сделан акцент на том, что указка питается от источника напряжением 4,5 В, но наличие в ее конструкции токоограничительного резистора говорит о том, что напряжение может быть любым, достаточно лишь подобрать требуемый ток. Именно так включен лазер в стробоскопе. Для расчета резистора надо измерить ток лазера указки и падение напряжения на нем. На образцах лазера, имеющихся у меня, падало 2,6 В при токе 35 мА. При выборе токоограничительного резистора не надо забывать о встроенном резисторе сопротивлением 68 Ом.

В процессе проведения опытов по питанию указки завышенным током одна из них была испорчена. Но, как оказалось, кристалл остался целым, а отгорел его тонкий вывод. Работоспособность лазера была восстановлена каплей токопроводящего клея. Использованные при этом инструменты - швейная игла и линза 6.

Одним из важнейших условий исправной работы автомобильного бензинового двигателя является правильная установка угла опережения зажигания. В двигателях автомобилей ВАЗ установка угла опережения зажигания производится по четырем меткам, - одной на шкиве коленвала, и трем на корпусе блока. Обычно, для регулировки зажигания пользуются довольно громоздким прибором - стробоскопом. По питанию стробоскоп подключают к аккумулятору автомобиля, а третий провод, - к свечному проводу первого цилиндра. При работающем двигателе лампа стробоскопа вспыхивает каждый раз, как только импульс высокого напряжения поступает на свечу первого цилиндра. Свет лампы направляют на метки в результате синхронного вспыхивания лампы мы видим четыре метки, - три на блоке и одну на шкиве, которая нам кажется неподвижной по взаимному расположению этих меток определяют правильность установки зажигания (метка на шкиве должна быть напротив средней метки на блоке, если это не так, нужно поправить поворотом корпуса трамблера).

Стандартный стробоскоп довольно громоздкий, тяжелый и хрупкий прибор, в основном, благодаря имеющейся в нем газоразрядной лампе и импульсному трансформатору но, используя современную элементную базу, можно сделать стробоскоп немногим больше шариковой ручки.
На рисунке 1 показана схема стробоскопа в котором вместо газоразрядной лампы работает светодиодная автомобильная лампочка на 12V (сейчас такие светодиоды-лампы стало модно устанавливать в подфарники вместо ламп накаливания).

Подключается прибор к системам автомобиля тремя проводами с зажимами «Крокодил» Два - к аккумулятору, а третий к проводу 1-го цилиндра. Третий «Крокодил» (подключаемый к свечному проводу) немного переделан, - его «зубы» загнуты внутрь, чтобы не портить свечной провод, и он скорее напоминает металлическую прищепку.
Как только импульс высокого напряжения поступает на свечу 1-го цилиндра, через емкость между жилой свечного провода и корпусом «Крокодила-прищепки» всплеск напряжения поступает на вывод 2 элемента D1.1 (стабилитрон VD1 защищает вход элемента от перенапряжения). Одновибратор на элементах D1.1-D1.2 формирует импульс, длительность которого около 1 mS. Этот импульс через буферный каскад на элементах D1.3 и D1.4 поступает на базу транзистора VT1, входящего в состав импульсного ключа VT1-VT2. Ключ открывается и вспыхивает светодиодная лампочка HL2.

Теперь о деталях схемы С1, R1 и R2 распаяны непосредственно в ручке «Крокодила», подключаемого на свечной провод. Соединительный кабель, - мягкий экранированный, длиной не более 50 см. Для подключения к аккумулятору, - обычные провода, как для «переноски», любой длины (в разумных пределах). Диод VD2 служит для защиты схемы от случайной переполюсовки питания. Светодиод HL1 - индикатор правильного подключения к аккумулятору. Основой для прибора послужил цилиндрический китайский карманный фонарик. Все его «внутренности» (выключатель лампочка, батарейки) удалены, оставлен пустой корпус и конический отражатель. Основание отражателя немного расширено, так чтобы в него можно было установить светодиодную автомобильную лампочку. В корпусе размешена печатная плата (рис. 2) на которой смонтировано большинство деталей. В корпусе просверлены отверстия под соединительные провода и светодиод HL1.

Подстроечный резистор R4 служит для установки длительности вспышки HL2 такой, при которой метка на вращающемся шкиве работающего двигателя видна неподвижной и не размазанной, но видимость, при этом остается достаточной.
Если прибор не реагирует на импульсы в свечном проводе, к которому подключен «Крокодил-прищепка», или реагировать начинает только при сильном сжатии «Крокодила», нужно увеличить сопротивление R2.
Вместо светодиодной лампочки можно использовать обычный сверхяркий светодиод, включив его через резистор сопротивлением около 10 Ом. Но пользоваться стробоскопом будет не так удобно, потому что из-за меньшей яркости света нужно будет его располагать ближе к меткам на двигателе.


Журнал «Радио» Муровин С.И.

Литература:
1. Н. Заец. Автомобильный стробоскоп из лазерной указки ж.Радио №1, 2004.

Стробоскоп и его применение в промышленности

Стробоскоп излучает свет определенной частоты. Устройство создает впечатление, что объекты, которые на самом деле движутся, неподвижны или медленны. Он создает эффект прыгающего движения, например, персонажей, что часто используется в театре, а также в качестве визуального оформления на дискотеках. Стробоскопы также практичны в промышленном секторе.

Стробоскоп и его применение в промышленности

В промышленности стробоскоп можно использовать для измерения скорости вращения деталей машин.Сопоставив мигающую полосу со скоростью вращения объекта, он кажется неподвижным. Использование такого решения позволяет точно измерять скорость вращения объектов без необходимости физического контакта. Кроме того, получение эффекта «кажущейся остановки» тестируемых элементов также позволяет диагностировать возможные отказы, паразитные колебания и другие нежелательные нарушения.

Строб - преимущества

Эти приборы отличаются высокой точностью при показаниях выше 900 об/мин и в этих диапазонах синхронизируются с частотой электросети.Преимущества использования стробоскопа для измерения скорости вращения заключаются в отсутствии потребления электроэнергии от сети при измерении. Благодаря этому не возникает явления замедления вращения или его остановки при падении мощности в случае небольших устройств. Кроме того, он также позволяет измерять скорость вращения тех элементов машины, которые из-за их малых размеров не могут быть достигнуты с помощью обычного тахометра. Стробоскоп также используется для определения вибраций, шума, биения и напряжений, вызванных вращением устройства.Это необходимо для выявления механических дефектов и неисправностей в машинах. Все благодаря возможности настройки и калибровки частоты вспышки, излучаемой стробоскопом.

Светодиодный стробоскоп

Работа светодиодных стробоскопов основана на освещении вращающегося элемента пучком импульсного света, создаваемого светодиодами. GRADOS предлагает как светодиодные, так и ксеноновые стробоскопы.

Приложение для стробоскопов

Спрос на стробоскопы приводит к появлению мобильных приложений.Благодаря им каждый пользователь смартфона может иметь мини-стробоскоп всегда с собой в кармане. Однако имейте в виду, что эти приложения имеют много ограничений. Для профессионального использования в промышленности мы рекомендуем использовать отдельные специализированные стробоскопы.

Стробоскоп Monarch Instrument

Наше предложение включает в себя профессиональные стробоскопы Monarch Instrument в переносном и стационарном исполнении. Пожалуйста, нажмите здесь и ознакомьтесь с полным ассортиментом этих продуктов.

Вам нужен портативный стробоскоп? Какой портативный стробоскоп подходит для остановок и ускорения? Вы можете найти ответы на эти вопросы, нажав здесь.

.

elatarka.pl - Aktualnosci - Для чего нужен режим стробоскопа в фонарике?

Интенсивные повторяющиеся вспышки. Раздражает зрение, полезен в момент опасности и характеризуется высокой художественной ценностью. Что такое режим стробоскопа и как им пользоваться?

Строб режим - что это такое?

Режим стробоскопа производит мощные вспышки света с переменной частотой, зависящей от устройства. В зависимости от интенсивности световых лучей мигающий свет, создающий эффект стробоскопа, можно использовать по-разному.Наиболее распространенные приложения:

1. Функция самозащиты

Интенсивное мерцание может раздражать зрение и вызывать сильный дискомфорт. Благодаря специфике работы фонарь, оснащенный стробоскопическим режимом, может использоваться как эффективное средство, способное отпугнуть нападающего или агрессивное животное.

Большое количество тактических фонарей оснащены стробоскопическим режимом. В силу своего специализированного назначения тактические фонари также отличаются усиленной конструкцией, адаптированной к нестандартным, более требовательным условиям.

2. Поиск/позиционирование

Создание сильных, интенсивных вспышек — идеальный способ отметить свое присутствие на большой открытой площадке. Рассматриваемая деятельность может быть полезна как при использовании поисковой группой, так и при использовании пропавшим человеком.

В руках умелого пользователя фонарь с функцией стробоскопического режима может быть использован для того, чтобы ввести вас в заблуждение при преследовании или скрыть свое местонахождение. Интервалы между вспышками можно использовать каждый раз для изменения положения фонарика, что в свою очередь затрудняет отслеживание точного местонахождения его владельца.Обсуждаемая тактика используется, в том числе, полицией.

3. Художественные ценности

Явление стробоскопического эффекта широко используется в сфере культуры и развлечений. Мерцающие огни дискотеки, спецэффекты в кино и прыгающие движения театральных персонажей — все это благодаря правильно откалиброванному источнику света.

Правильное использование стробоскопического режима может использоваться для создания визуальных иллюзий. Благодаря им плавно движущаяся фигура покажется зрителю замедленной или полностью остановившейся.

Это явление прекрасно показано на рисунке ниже:

Автор Zureks — собственная работа, общественное достояние, https://commons.wikimedia.org/w/index.php?curid=8773856.

Проблесковые фонари — рекомендуемые модели

При выборе фонарика со стробоскопом особое внимание уделите его параметрам. Качество изготовления, количество люменов или даже правильное сочетание компонентов. Каждый компонент может существенно повлиять на качество генерируемого света и, следовательно, на эффективность бликов, генерируемых фонариком.Ниже представлены избранные модели фонарей, которые благодаря выгодному соотношению цена-качество значительно выделяются среди многочисленных конкурентов.

Фонарик Fenix ​​TK90

Фонарь Fenix ​​TK09 — это функциональный и надежный продукт, высокое качество изготовления которого отражается в необыкновенных возможностях освещения. За счет встроенного светодиода Cree XP-L с яркостью 900 люмен фонарь может похвастаться рекордной дальностью 310 метров .Кроме того, в распоряжении пользователя есть три режима яркости, где в низком режиме время работы устройства составляет 37 часов. Что отличает фонарь Fenix ​​TK09 от конкурентов, так это два дополнительных режима мощности. Батареи или режим работы от батареи? Выбор за пользователем.

Фонарик Nitecore P36

Фонарь Nitecore P36 — продукт премиум-класса, выделяющийся на фоне конкурентов благодаря нестандартным, качественным решениям и инновационным технологическим идеям. Удобная ручка, свет на 2000 люмен и 300 метров эффективной освещенности , что еще скрывает фонарь Nitecore P36?

Фонарь

Nitecore P36 — это долговечное изделие, полностью защищенное от травм и неблагоприятных воздействий окружающей среды. Эффективный диод Cree XMT-G2 был полностью закрыт линзой из минерального стекла, а для построения прочной конструкции использован авиационный алюминий, дополнительно покрытый анодированием HAIII. Фонарик также водонепроницаем (IPX8), а умело проложенная электрика защищает его от переполюсовки и потери емкости.В комплекте всего 4 световых режима , самый низкий из которых обеспечивает 325 часов непрерывной работы изделия. Следует также упомянуть источники питания. В зависимости от предрасположенности владельца - фонарь Nitecore может питаться от батареек 18650 или батареек RCR123.

Фонарик со стробоскопическим режимом — полезное устройство с множеством потенциальных применений. Отказ от потенциальной угрозы, игра со светом, а может, проведение поисковой акции? Фонарик может пригодиться везде, и его полезность зависит только от потребностей и творчества его владельца.

.

Строб | Тесто Сп. о.о.

Стробоскоп — это устройство, излучающее яркие вспышки света через строго определенные промежутки времени. В темноте человеческий глаз быстро привыкает к череде ярких вспышек. Поэтому записывает только моменты, освещенные вспышками. Если это делается в сочетании с движущимся объектом, при каждом срабатывании вспышки появляются только отдельные изображения объекта. В промышленных условиях светодиодные стробоскопы в основном используются на регулярной основе.

Высококачественный светодиодный стробоскоп является привлекательным решением во многих отношениях:

  • регулируемая последовательность вспышек
  • удобный
  • удобный в использовании - портативные стробоскопы

Светодиодный стробоскоп h3>

Ксеноновый стробоскоп h3>

Измерение скорости – найдите лучший стробоскоп

В зависимости от конкретной области применения рекомендуются разные модели.Они различаются по нескольким факторам, таким как тип источника света, область применения и размер.

Работа с портативными устройствами необходима для технического обслуживания машины. Настольные варианты используются в основном в лабораториях и испытательных установках. Существенным отличием различных типов ручных стробоскопов является источник света. Чем ярче свет и чем быстрее последовательность вспышек, тем точнее результаты измерения.

Testo предлагает широкий выбор устройств.Это позволяет вам найти правильный стробоскоп для вашей области применения.

Ксеноновый стробоскоп Testo

testo 476 — это ксеноновый стробоскоп . Он используется для измерения скорости вращения и других областей измерения. Ручной стробоскоп высокой интенсивности контролирует как вращательные, так и вибрационные движения. Объекты в труднодоступных местах также можно точно измерить с помощью testo 476.Нет необходимости прерывать производственный процесс для выполнения измерений. Это делает ксеноновый стробоскоп очень эффективным измерительным прибором. Простая конструкция позволяет использовать стробоскоп без дополнительной подготовки. В комплект поставки входят транспортировочный кейс, зарядное устройство, четыре адаптера и триггерная вилка.

Testo — ваш надежный партнер, который понимает высокие требования, предъявляемые к измерительным приборам. Мы предлагаем правильный стробоскоп для каждого применения.Ищете ли вы светодиодный или ксеноновый стробоскоп и подходящие аксессуары - мы всегда к вашим услугам. Если у вас есть какие-либо вопросы по поводу предложения, пожалуйста, свяжитесь с нашими техническими консультантами.

Светодиодный стробоскоп: высокая интенсивность света и широкий диапазон измерения h4>

testo 477 — это светодиодный проблесковый маячок . Излучение до 300 000 вспышек в минуту обеспечивает очень большой диапазон измерения.Устройство также обеспечивает интенсивность света до 4800 люкс. Длительное время автономной работы (до пяти часов) позволяет чрезвычайно эффективно использовать прибор и выполнять большое количество измерений за один цикл.

Нет необходимости использовать светоотражающие маркеры для получения правильных результатов измерений с помощью testo 477. Это дает возможность тестировать даже очень мелкие детали и работать в труднодоступных местах.

Модель testo 477 имеет впечатляющие технические характеристики:

  • класс защиты IP65
  • индивидуально регулируемая продолжительность вспышки
  • яркий ЖК-дисплей
  • цвет вспышки: прибл.6500 К

Точные измерения с помощью ручного стробоскопа

В повседневной работе важно иметь возможность гибкого использования стробоскопа. Ручной стробоскоп позволяет проверять работу машин и компонентов на месте. Точное измерение скорости требуется во многих отраслях промышленности, таких как:

  • автомобильная промышленность
  • текстильная промышленность
  • технология передачи вибрации

Простое управление идеально дополняет преимущества ручного стробоскопа.Четкий, читаемый дисплей также повышает удобство использования. Некоторые модели также могут быть подключены к внешним устройствам для высокоточного управления. Ручной стробоскоп особенно полезен, если он позволяет вам проводить необходимые измерения без необходимости наклеивания отражающего маркера. В этом случае нет необходимости останавливать работу машин.

Измеритель скорости со стробоскопом

Стробоскоп используется в промышленных зонах в основном для измерения скорости вращения вращающихся частей машин.Эта технология также используется для обнаружения и визуализации любых ошибок.

Маркер используется для определения скорости вращения машины. Маркер всегда появляется в одном и том же месте и в один и тот же момент, когда движение постоянно. Если ритм движения маркера гармонирует с разрядами стробоскопа, то он появляется одновременно с каждой вспышкой. В результате наблюдаемое изображение всегда остается одним и тем же. С точки зрения наблюдателя кажется, что движение остановилось.

Скорость машины можно точно определить по конструкции машины, расположению маркера и последовательности мигания. Точно так же также можно определить, изменилась ли его скорость вращения.

Измерения данного типа выполняются как в мобильном, так и в стационарном режиме. Портативный ручной стробоскоп позволяет гибко проверять машины и компоненты на месте.


Вспышка, используемая в промышленных условиях, должна соответствовать нескольким требованиям:

  • быстрая последовательность вспышек для обеспечения высокого диапазона измерений
  • яркий источник света
  • чрезвычайно короткая экспозиция вспышки
все выделяются высокой емкостью батареи.Использование в этом режиме очень энергозатратно. Недостаточная мощность батареи значительно сокращает срок службы.

.

Стробоскопы - musyczny.pl

Будь то в музыкальных клубах или на стадионах, мы можем найти широкий спектр устройств для создания световых эффектов. Наиболее популярными являются прожекторы, лазеры и сканеры, причем самая большая группа — отражатели. Среди них вы найдете как самые базовые модели, просто освещающие заданную площадь, так и гораздо более продвинутые налобные фонари, имеющие множество функций, таких как изменение цвета света, %%LINK%1511%%, эффект размытия и многие другие. .Однако, если мы ищем высококачественное оборудование, предлагающее только один эффект, мы можем ожидать, что один эффект будет сохранен на очень высоком уровне. Поэтому, если мы хотим очень качественный стробоскопический эффект и нам не нужно менять цвет света или какие-либо другие дополнительные функции, мы должны выбрать типичную стробоскопическую лампу. Устройства этого типа также отличаются конструкцией, но вне зависимости от их размеров и мощности принцип работы очень похож. Что такое стробоскоп и на что следует обратить внимание при выборе такого оборудования?

ИГРА ВЕТРОВ
Проблесковую лампу можно использовать по-разному.Этот тип оборудования можно использовать для освещения помещения, как и традиционный рефлектор, но главное преимущество заключается в его основном потенциале. %%LINK% 1512 %% похоже на внезапное включение и выключение света. В зависимости от того, какую модель мы выбираем, у нас может быть несколько настроек. Мы можем выбрать, какой будет частота световых сигналов, и они будут включаться, чтобы мы могли настроить оборудование так, чтобы световые сигналы мигали очень быстро или медленно и ритмично. Некоторые модели допускают эффект размытия, при котором свет постепенно исчезает и загорается плавно, а не внезапно, как в традиционном стробоскопе.Более того, более продвинутые модели позволяют запрограммировать скорость мигающих огней в соответствии с воспроизводимой в данный момент музыкой. Тогда эффект будет еще более впечатляющим. При выборе стробоскопов следует обратить внимание на несколько важных деталей. Чем больше мощность, тем ярче можно получить свет. Не всегда чем больше, тем лучше, например, когда мы ищем стробоскоп для небольшого помещения. Тогда очень сильная фара будет слепить свет, что, несомненно, будет не из приятных ощущений.Для небольших комнат следует выбирать менее мощные светильники, а более мощные лучше подходят для больших залов или открытых пространств. Также стоит обратить внимание на размер самого светильника, ведь некоторые модели оснащены большим количеством лампочек. Здесь стоит отметить, что специальные лампочки через какое-то время могут перегореть, но тогда достаточно купить сменные лампочки, которые стоят не дорого и замена которых не является сложной задачей.

УСТАНОВКА И БЕЗОПАСНОСТЬ
Одни %%LINK% 1513 %% можно ставить прямо на паркет, а другие монтировать на подступенке, например под потолком.При подвешивании мы должны приложить все усилия, чтобы оборудование было установлено надежно, чтобы не было риска его отсоединения с течением времени, так как это может подвергнуть опасности не только само оборудование, но и людей, находящихся поблизости.

.

Проблесковый маячок 4 светодиода 12Вт 12-24В R65 R10 ALR

Проблесковый маячок мигает в 3-х режимах (оранжевый цвет свечения). Оснащен 4 мощными светодиодами ALR. Светильник оснащен синхронизирующим кабелем, поэтому можно синхронизировать любое количество светильников между собой (схема подключения в комплекте с светильником). Фонарь для профессионального использования: дорожные и коммунальные службы, помощь на дорогах, сельхозтехника и др.

Лампа изготовлена ​​из высококачественных материалов, лампа на 100% водонепроницаема, поэтому ее можно использовать в любых погодных условиях.

Каждый светильник имеет монтажный комплект.

Дополнительная информация к позиции

Товар новый

Цена указана за 1 шт.

Технические параметры:

1

8

Номер детали:

MF8005

ABS Plastic

Power (W):

12W

Светодиодный Количество:

4

Объем питания (V):

12V / 24V

Водостойкость:

IP65

Одобрение:

E9

,

ЕЭК R10

,

ECE R65

Длина кабеля (мм):

300

Ширина (мм):

95.5

Высота (мм):

28

28

толщина (мм):

20

Адаптация автомобиля:

Универсальный продукт

отзывы

пользователи Чтобы иметь возможность оценить продукт или оставить отзыв, вы должны быть.

Укажите контактные данные, и мы сообщим вам, когда товар будет в наличии

  • Проблесковый маячок 4 светодиода 12 Вт 12-24 В R65 R10 ALR
  • Код товара: MF8005
  • Выберите размер мы хотим сообщить вам о размере :

12 месяцев - Гарантия предоставляется продавцом на какое-то время 12 месяцы.90 140

12 месяцев 9000 3.

Стробоскопия гортани – Клиника современной ларингологии в Кошалине и Колобжеге

Что такое стробоскопическое исследование гортани

Стробоскопическое исследование гортани – это исследование, позволяющее тщательно изучить работу голосовых связок. Голосовые связки (другими словами: голосовые связки, от латинского plica vocalis ) дергаются и сужаются, закрывая голосовую щель — так мы издаем звуки, в том числе и речь. Голосовые связки очень быстро дрожат при произнесении звука (200-4500 Гц, а то и несколько тысяч колебаний - кадров в секунду!).Человеческий глаз не способен регистрировать отдельные «кадры», из которых состоит движение голосовых связок (предполагается, что мы можем различать максимум до 25 кадров в секунду, над изображением «сливается»). К сожалению, наблюдение «смешанного» изображения не дает много диагностической информации.

Принцип работы стробоскопа

На помощь приходит технология - стробоскоп ларингологический излучает свет соответствующей частоты, подстраивая его под звук, издаваемый пациентом во время обследования.Соответственно сдвигая фазу светодиодного света, он создает изображение, которое наш глаз воспринимает как изображение «замедленного движения». Это позволяет очень точно диагностировать работу голосовых связок.

В Мини-Клинике мы используем светодиодный стробоскоп мирового класса ATMOS LED, который при подключении к ларингоскопу позволит врачу оценить состояние и функцию голосовых связок. Это незаменимый прибор, особенно для аудиологов и фониатров, специализирующихся на проблемах с речью.

Заболевания голосовых связок и гортани

Из многих заболеваний голосовых связок наиболее распространенными являются:

Это небольшие опухоли на голосовых связках, которые затрудняют их полное смыкание.В результате развивается надоедливая хрипота, голос становится «дрожащим», а речь становится утомительной. Причиной, как правило, является длительное напряжение голоса, следовательно, это распространенное профессиональное заболевание учителей. Чаще поражает женщин с высоким голосом. Заболевание начинается с появления мягких узелков, которые при отсутствии лечения переходят в твердую форму, требующую оперативного вмешательства.

  • вторичные гипертрофические изменения голосовых связок

Характерным признаком гипертрофии голосовых складок является их утолщение.Он может возникнуть в результате невылеченных инфекций гортани и форсирования голоса. Затрудняется правильная фониатрическая работа струн - снижается голос. Лечение затруднено, часто необходимо вмешательство хирурга и фониатрическая реабилитация.

  • парез мышц голосовых связок

Парез затрудняет смыкание голосовых связок. Голос становится менее громким, иногда наступает полная тишина (асфония). Может возникнуть в результате инфекций, параличей, длительного «истощения» голоса.Лечение, в зависимости от причины пареза, может привести к полному выздоровлению

Стробоскопическое исследование гортани позволяет на ранней стадии выявить опухолевые изменения в ней. Быстрое обнаружение означает больше шансов на полное выздоровление.

Симптомы

При появлении следующих симптомов - приглашаем Вас в мини-клинику на обследование:

  • привычное кряхтение,
  • чувство хронической усталости при разговоре,
  • ощущение сухости в горле,
  • снижение голоса громкость,
  • сужение звукоряда голоса или изменение его высоты (напр.вы начинаете говорить "бас")
  • потеря голоса "четкость",
  • кратковременные или длительные пустоты,
  • хрипота,
  • тишина.

Причины нарушений голосовых связок (этиология)

    90 025 шум и плохая акустика в рабочих помещениях (преимущественно учителей), 90 026 90 025 качество воздуха (сухой, перегретый, запыленный), 90 026 90 025 голосовая перегрузка - речь , пение слишком долго,
  • плохое отношение говорящего,
  • и даже снижение психофизической подготовленности (например, депрессия).

Как выглядит обследование

Стробоскопическое исследование похоже на ларингоскопическое исследование. Отличие, однако, в том, что вместо стандартного (постоянного) источника света к ларингоскопу присоединяются специальный микрофон и стробоскопический светодиодный источник. После того, как ларингоскоп помещают в рот пациента, его просят «пропеть» разные звуки. Затем на экране мы видим движение голосовых связок «в замедленном темпе». Видеоизображение можно сохранить.

Стробоскопию гортани в Миниклинике проводит врач Эдвард Бауэр.

.

Стробоскопы | Фейерверки PyroTech SHOP

Стробоскопы - это пиротехнические изделия с ярким высокочастотным мигающим светом. Интенсивность и продолжительность пиротехнического эффекта и цвета варьируются. Эффект стробоскопа, то есть мерцающих огней, визуально привлекателен и эффектен.

Стробоскопы хорошо зарекомендовали себя как эффектная декорация для различных мероприятий и вечеринок, как элемент пиротехнических шоу, популярны для постановки матчей и игр.Наилучшие эффекты стробоскопов достигаются на выездных мероприятиях, в основном они зависят от интенсивности мерцания, которую необходимо подбирать по обстоятельствам и потребностям.

Большие стробоскопы идеально подходят для больших пиротехнических шоу, так как они обычно имеют систему взрывателя. Мощный мигающий свет, зависящий от частоты, может быть интересным дополнением к другим фейерверкам при правильном сочетании различных эффектов.

импульсные стробоскопы создают эффект непрерывного, но мерцающего света.Они хорошо работают в качестве декораций для матчей и различных мероприятий с пиротехническим шоу.

Проблесковые вспышки имеют яркий пульсирующий свет. Это в первую очередь разновидность сигнальной ракеты, также ее можно использовать как часть декораций фейерверка.

PyroTech

пиротехнические стробоскопы

Наш магазин пиротехники предлагает все виды стробоскопов, у нас есть практичные комплекты, а также отдельные стробоскопы.

Выбирайте из больших стробоскопов с различными частотами и цветами света.Есть также плавких вспышек и стробоскопических вспышек, также с различными цветами эффекта.

Мы являемся одним из крупнейших дистрибьюторов пиротехники для розничных и оптовых покупателей. Мы предлагаем только пиротехнику от проверенных и признанных производителей, самого высокого качества и по доступной цене.

Вся продукция имеет необходимые разрешения и согласования, подробное техническое описание и рекомендации по технике безопасности.Также описаны визуальные эффекты, которые дополнительно представлены в приложенных видеороликах.

Если выбранного товара нет в наличии, мы приложим все усилия, чтобы сделать его доступным в течение 7 дней. Мы рекомендуем вам связаться с нами по телефону или оставить сообщение, если у вас есть какие-либо вопросы или проблемы, мы предоставляем профессиональные советы и помощь.

.

Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)