Какие смазочные масла используют на производстве


Смазочные материалы: виды, классификация и применение

Смазочные материалы сегодня имеют широкий спектр применения в автомобильной технике, судостроительной, домашнем хозяйстве и других аспектах жизни. Бывают они различных видов и форм: минеральные, органические, синтетические. Смазочные материалы применяют для уменьшения трения в деталях, что способствует их большей износостойкости. Во всем множестве ГСМ, их применении и видах разберемся далее.

Свойства смазок

Масла и смазки имеют ряд своих особенностей и свойств. В зависимости от температуры окружающей среды они могут изменять свое агрегатное состояние, менять свойства, условия эксплуатации.

Итак, свойства смазочных материалов:

  • Консистентность или твёрдость материала. Определяется специальным прибором – пенетрометром с конусом. Чем выше степень погружения в жидкость, тем она соответственно мягче.
  • Прокачиваемость также определяется опытным путем. Такое свойство важно в холодное время года. Когда необходимо быстро смазать всю систему изнутри.
  • Температура каплепадения — важный фактор при выборе смазочного материала. Чем выше данный показатель, тем при более горячих температурах будет доступно использование ГСМ.
  • Противоизносность – показатель для определения способности уменьшать трение. Чем он выше, тем гуще масло и, соответственно, повышается долговечность детали.
  • Не маловажным является антикоррозионное свойство. Выявить его можно с помощью технических тестов. При наличии в смазке органических примесей можно сказать, что она будет защищать деталь от ржавчины.
  • Водоотталкивающее свойство также определяется техническими тестами. Чем больше смазки осталось, тем она водоустойчивее.

Стоит упомянуть о следующих фактах, характеризующих ГСМ:

  • Вязкость. Чем она выше, тем хуже для техники.
  • Возможность образовывать маслянистую пленку.
  • Температура вспышки материала.
  • Взаимодействие ГСМ с кислородом.
  • Коэффициент маслянистости. При более высоких его показателях трение уменьшается. Но чрезмерная маслянистость привлекает много пыли, грязи, твердых частиц, что способствует ухудшению работы механизма.

Классификация смазочных материалов

Видов смазочных материалов на рынке представлено множество: пластинчатые, жидкие, твердые и даже газообразные. Каждый из этих видов делится на свои подвиды и имеет классификации. Но основные характеристики одинаковы.

Наиболее распространенными являются пластинчатые виды смазок. Они имеют густую пастообразную консистенцию и применяются для смазывания подшипников, рычажных механизмов. Менее распространёнными, но пользующимися спросом, называют твердые смазки, до затвердевания они представляют собой порошок или суспензию, для которых нужен загуститель.

Классифицируют смазки и масла по следующим признакам:

  • по составу;
  • по консистенции;
  • по области применения.

Рассмотрим подробнее.

По консистенции

Смазки различаются по консистенции на пластинчатые, полужидкие и твердые. Каждая из них в своем составе имеют процентную долю масла, загустителя различных примесей и присадок для улучшения их физико-химических свойств.

Пластинчатые применяются в основном в автомобильной технике. Твердые применяют для плотного и качественного уплотнения и защиты техники. К жидким относят моторные масла. Используются для смазывания всех деталей и из бесперебойной работы.

Общая массовая доля присадок в смазке не более 5%. Они задают определенную химическую формулу и состав. Основными добавками являются – дисульфид молибдена и графит.

По назначению

Конечно, применять один и тот же ГСМ в автомобильных двигателях и судоходном строительстве не стоит. Поэтому есть определенное разделение, которое помогает сделать правильный выбор. Кроме того, существуют таблицы применения автомобильных смазок. Разберемся во всем подробнее:

  • Антифрикционные предназначены для уменьшения трения деталей и увеличения их износостойкости. К ним относятся различные виды солидола и графитина. Конечно, данные виды ГСМ не так популярны, как раньше. На смену им приходят усовершенствованные пастообразные и твердеющие смеси. По цене они дороже обычного солидола.
  • Смазки узкоспециализированные разработаны были для каждой из отраслей в отдельности, то есть применять их нужно строго в своих отраслях.
  • Консервационные применяются для долговременной защиты и покрытия деталей. Таким образом, защита от коррозии достигает 70%.
  • Уплотнительные предназначены для улучшения герметизации зазоров, резьбовых соединений, упрощения сборки и демонтажа арматурных изделий.

Особое внимание стоит уделить ГСМ антифрикционным. Они в отличие от всех остальных имеют свою классификацию:

  • Термостойкие хорошо себя проявляют при высоких температурах.
  • Морозостойкие предоставляют возможность беспрепятственного использования смазок в холодное время года и обеспечения полного смазывания и прогона масла по необходимым местам.
  • Химически стойкие не позволяют детали взаимодействовать с кислородом, тем самым предотвращают коррозию.
  • Общего назначения – солидол, литол.
  • Смазки для приборов.

В производстве используются следующие смазочные масла: автотракторное, авиационные и индустриальные.

По составу

Смазки по составу бывают нефтяные и синтетические. Каждая из них имеет свои свойства, цену и область применения.  Очень важно подобрать подходящий ГСМ.

  • Для небольших мощностей с высокими скоростями выбирают минеральные, синтетические применимы для высоких нагрузок с низкими скоростями.
  • Следующими будут мыльные смазки. Они производятся с различными загустителями. В качестве них используют соли мыльных кислот. Такие ГСМ устойчивы к температурам. Однако, имеют особые условия хранения.
  • Натриевые смазки узкоспециализированы. Имеют ряд недостатков: легко смываются водой, к тому же температура плавления низкая.
  • Бариевые смазки.
  • Литиевые смазки широко применимы. Имеют отличные показатели. А в цене ничуть не дороже обычного солидола.
  • Неорганические смазки применяют в качестве загустителя термически устойчивые присадки.
  • Органические – одни из самых термоустойчивых ГСМ. Температура плавления составляет порядка 220 градусов Цельсия.
  • Углеводородные смазки применяются для защиты деталей и их консервации. Однако, помните, применять их рекомендуется лишь во внутренних частях техники. Ибо они имеют свойство притягивать и собирать на себе пыль с грязью и твердыми частицами.

Каждая из описанных смазок обладает особыми свойствами. Подбирать ГСМ стоит в соответствии с ними. Кроме этого, есть условия хранения и применения любых смазочных материалов:

  • Наносить ГСМ можно пальцами, кисточкой, тряпочкой, губкой.
  • Хранить ГСМ необходимо в темном месте. Срок годности 5 лет. Но и после она является рабочей, в случае соблюдения всех эксплуатационных правил.
  • При попадании смазки в глаза, срочно промыть их проточной водой. Если боль и резь в глазах не проходят, обратиться в ближайшее медицинское учреждение.
  • Обязательно нужно уточнять совместимость разных ГСМ. В противном случае может произойти порча или поломка детали.

Минеральные смазочные материалы более популярны среди производителей, которые их используют. Это связано с их технико-физическими свойствами. Они лучше, чем у синтетики.

Применение смазок

Для правильной и отлаженной работы механизмов и деталей стоит правильно подбирать смазку. Так, ГСМ применяют в:

  • Подшипниках качения. Принято использовать пластичные смазки. Они подходят благодаря своей консистенции и физико-химическим свойствам.
  • Шаровые шарниры могут изнашиваться или не работать связке со смазкой, в том случае, если сама деталь установлена или подобрана неправильно. В этом случае, любая смазка не подходит.
  • В карданных шарнирах раньше использовали масло. Его приходилось относительно часто менять. С течением времени перешли на ГСМ. Так стало проще, долговечность деталей увеличилась, а работа стала слаженней.
  • Широко наблюдается применение литейных смазок в таких отраслях, как текстильное производство, промышленность, автомобильное производство.
  • Различные масла применяют в домашнем хозяйстве. Для смазывания ручек дверей, дверных петель.
  • Для смазывания спиц колес, узлов в приборах.
  • Направляющих элементы автомобилей.
  • Замки, защёлки также смазываются маслом.

Однако, применение смазок не всегда и не везде уместно. Порой они делают только хуже. Перед их применением стоит четко ознакомиться с инструкцией и применением. Возможными последствиями и подбором правильного ГСМ.

Таким образом, сегодня производство масел и смазок поставлено на поток, рынок пестрит изобилием ГСМ. Они бывают из нефтяного сырья и синтетического. Их классификация многогранна. Бывают смазки — аналоги зарубежных. Они в разы дешевле. Бывает и наоборот. Главное, знать, в чем стоит отличие и не переплачивать. Представить жизнь обычного человека, автомобилиста и производственника без смазки сегодня практически невозможно. Она стала незаменимым элементом, продлевающим срок службы деталям и упрощая жизнь человеку.

Смазочное масло - Energy Education

Рисунок 1. Смазочное моторное масло. [1]

Смазочное масло , иногда называемое просто смазкой / смазкой , представляет собой класс масел, используемых для уменьшения трения, нагрева и износа между механическими компонентами, которые контактируют друг с другом. Смазочное масло используется в моторизованных транспортных средствах, где оно известно как моторное масло и трансмиссионное масло .

Есть две основные категории смазочных масел: минеральные и синтетические. Минеральные масла - это смазочные масла, очищенные из сырой нефти природного происхождения. Синтетические масла - это производимые смазочные масла. [2] Минеральные смазочные масла в настоящее время являются наиболее часто используемым типом из-за низкой стоимости извлечения масел из сырой нефти. Кроме того, можно производить минеральные масла с различной вязкостью, что делает их полезными в широком диапазоне применений.

Смазочные масла различной вязкости можно смешивать вместе, и именно эта способность смешивать их делает некоторые масла такими полезными.Например, обычное моторное масло, показанное на Рисунке 1, обычно представляет собой смесь масла с низкой вязкостью для облегчения пуска при низких температурах и масла с высокой вязкостью для улучшения характеристик при нормальных рабочих температурах. [2]

Использование в транспортных средствах

Использование смазочных масел в транспортных средствах жизненно важно для их эксплуатации. Когда двигатель правильно смазан, ему нужно меньше работать с движущимися поршнями, так как поршни легко скользят. В конечном итоге это означает, что автомобиль может работать при меньшем расходе топлива и при более низкой температуре.В целом, правильное использование смазочного масла в автомобиле повышает эффективность и снижает износ движущихся частей двигателя. [3]

Переработка

Поскольку смазочные масла являются таким ценным ресурсом, было много усилий по переработке отработанных масел. Отработанное смазочное масло перерабатывается на «перерабатывающих заводах», где вода удаляется из масла в процессе обезвоживания. Примеси в отработанном масле, такие как промышленное топливо, отделяются, а масло улавливается с помощью вакуумной перегонки.В результате остаются тяжелые отходы, содержащие присадки к маслам и побочные продукты. Затем извлеченное смазочное масло проходит ряд процессов очистки для удаления других примесей. После очистки масло разделяется на три различных вязкости для различных целей. [4]

Для более подробного ознакомления с процессом переработки масла щелкните здесь.

Для дальнейшего чтения

Ссылки

.

Смазка и смазочные материалы | IntechOpen

Все жидкости обеспечивают своего рода смазку, но некоторые делают это гораздо лучше, чем другие. Разница между одним смазочным материалом и другим часто является разницей между успешной работой машины и отказом. Практически в любой ситуации нефтепродукты превосходно подходят как смазочные материалы. Нефтяные смазки обладают высокой способностью смачивать металл, и они обладают структурой или вязкостными характеристиками, которые требуются для прочной пленки, эти масла обладают множеством дополнительных свойств, необходимых для современных смазок, таких как хорошая водостойкость, присущие антикоррозийные свойства. , естественная адгезия, относительно хорошая термическая стабильность и способность передавать тепло от трения от смазываемых деталей.Более того, почти все эти свойства могут быть изменены в процессе производства, чтобы получить подходящую смазку для каждого из множества вариантов применения. Масла разрабатывались рука об руку с современным оборудованием, которое они смазывают; действительно, эффективность, если не существование, многих сегодняшних отраслей промышленности и транспортных средств зависит от нефтяных смазочных материалов, а также от нефтяного топлива.

Базовая нефтяная смазка - это смазочное масло, которое часто называют просто «маслом».Эта сложная смесь углеводородных молекул представляет собой одну из важных классификаций продуктов, полученных при переработке сырой нефти, и легко доступна в большом количестве типов и сортов.

Любое описание смазочных масел было бы неполным без учета масел для автомобильных двигателей. Эти масла используются в большем количестве, чем все остальные смазочные материалы вместе взятые, и представляют интерес для большего числа людей, чем любые другие смазочные материалы. Автомобильные производители обычно рекомендуют моторные масла в соответствии с классификацией вязкости Американского общества инженеров автомобильной промышленности (SAE).

Моторные масла и смазочные материалы составляют почти половину рынка смазочных материалов и поэтому вызывают большой интерес. Основная функция моторного масла - продлить срок службы движущихся частей, работающих в различных условиях скорости, температуры и давления. Ожидается, что при низких температурах смазка будет течь в достаточной степени, чтобы движущиеся части не испытывали недостатка масла. Ожидается, что при более высоких температурах они будут разделять движущиеся части, чтобы минимизировать износ. Смазки уменьшают трение и отводят тепло от движущихся частей.

1.3.1. Общая классификация смазочных масел

Термин «смазочное масло» обычно используется для обозначения всех тех классов смазочных материалов, которые применяются в качестве жидкостей [3]. Смазочные масла производятся из более вязкой части сырой нефти, которая остается после удаления перегонкой газойля и более легкой фракции [4-8]. Хотя сырая нефть из разных частей мира сильно различается по свойствам и внешнему виду, их элементный анализ относительно невелик.Таким образом, образцы сырой нефти обычно показывают содержание углерода от 83% до 87% и содержание водорода от 11% до 14%. Остальное состоит из таких элементов, как кислород, азот и сера, а также различных металлических соединений. Элементный анализ, таким образом, дает мало информации о крайнем диапазоне физических и химических свойств, которые действительно существуют, или о природе смазочных базовых компонентов, которые могут быть получены из конкретной сырой нефти.

Представление о сложности проблемы переработки смазочного масла может быть получено из рассмотрения вариаций, которые могут существовать в одной углеводородной молекуле с определенным числом атомов углерода.Например, парафиновая молекула, содержащая 25 атомов углерода, имеет 52 атома водорода. Это соединение может иметь около 37 000 000 различных молекулярных расположений [3]. Углеводороды сырой нефти:

1.3.1.1. Парафиновые компоненты

Парафиновые компоненты, показанные на рис. 5 (a, b), которые определяют температуру застывания, содержат не только линейные, но и разветвленные парафины. Парафины с прямой цепью и высоким молекулярным весом повышают температуру застывания масел (воскообразные соединения) и должны удаляться процессами депарафинизации.

Разветвленные парафины представляют собой представляющие интерес с химической точки зрения углеводороды, и они в больших количествах содержатся в фракциях смазочного масла из парафиновой нефти. Масло, богатое парафиновыми углеводородами, имеет относительно низкие плотность и вязкость для их молекулярной массы и диапазона кипения. Также они обладают хорошими вязкостно-температурными характеристиками. В целом парафиновые компоненты достаточно устойчивы к окислению и особенно хорошо реагируют на ингибиторы окисления [9, 10].

1.3.1.2. Нафтеновые компоненты

Они имеют гораздо более высокую плотность и вязкость для их молекулярной массы по сравнению с парафиновыми компонентами. Преимущество нафтеновых компонентов перед парафиновыми заключается в том, что они имеют низкую температуру застывания и, следовательно, не способствуют образованию парафина. Однако одним из недостатков является то, что они имеют худшие вязкостно-температурные характеристики. Однокольцевые алициклы с длинными парафиновыми боковыми цепями, однако, обладают многими общими свойствами с разветвленными парафинами и фактически могут быть очень желательными компонентами для базовых масел смазочных материалов.Нафтеновые компоненты, рис. 5 (c), как правило, имеют лучшую растворяющую способность для добавок, чем парафиновые компоненты, но их устойчивость к окислительным процессам ниже [9, 10].

1.3.1.3. Ароматические компоненты

У них есть еще более высокие плотности и вязкости. Вязкость / температурные характеристики в целом плохие, но температура застывания низкая, хотя они обладают лучшей растворяющей способностью для присадок, их устойчивость к окислению низкая. Что касается алициклов, ароматические углеводороды с одним кольцом и длинной парафиновой боковой цепью могут быть очень желательными компонентами базового масла, рис.5 (г). Классификацию углеводородов на парафиновые, нафтеновые и ароматические группы, которые обычно используются для характеристики базового масла, следует рассматривать не как абсолютную, а как выражение преобладающих химических тенденций базовых компонентов [11].

1.3.1.4. Неуглеводородные компоненты

Неуглеводороды в смазочном масле во многих отношениях аналогичны углеводородам. Соединения серы и азота почти полностью находятся в кольцевых структурах, таких как типы сульфидов, тиофена, пиридина и пиррола.Также считается, что в смазочном масле существуют более сложные молекулы, в которых атомы азота и серы находятся в одной и той же молекуле. Как и в случае углеводородов, эти соединения, вероятно, также будут иметь парафиновые боковые цепи и, возможно, будут конденсироваться с нафтеновыми и ароматическими кольцевыми структурами [11]

Хотя эти неуглеводороды могут присутствовать только в следовых количествах, они часто играют важную роль в контроль свойств смазочных масел. Как правило, они химически более активны, чем углеводороды, и, следовательно, они могут заметно влиять на такие свойства, как устойчивость к окислению, термическая стабильность и склонность к образованию отложений.При нефтепереработке общая тенденция заключается в снижении содержания неуглеводородов до минимума.

Нафтеновая кислота составляет большую часть кислородсодержащих соединений, содержащихся в нефти. Они удаляются в процессе очистки путем нейтрализации и дистилляции. Нафтенаты остаются в остатке от перегонки и могут быть удалены путем деасфальтизации. Современные методы рафинирования обычно удаляют большую часть смол, асфальтенов, полициклических ароматических, диароматических и аналогичных им неуглеводородов, так что конечная смазка состоит в основном из насыщенной и моноциклической ароматической фракции [12].

Рисунок 5.

Химический состав смазочного масла

1.3.2. Основные свойства смазочных масел

Основными свойствами, которыми смазочное масло должно обладать в полной мере, являются:

1.3.2.1. Физические свойства смазочного масла
  1. Вязкость

Вязкость - это мера внутреннего трения в жидкости; как молекулы взаимодействуют, чтобы сопротивляться движению. Это жизненно важное свойство смазочного материала, поскольку оно влияет на способность масла образовывать смазочную пленку или минимизировать трение [8].Ньютон определил абсолютную вязкость жидкости как отношение между приложенным напряжением сдвига и результирующей скоростью сдвига.

  1. Индекс вязкости

Наиболее часто используемый метод для сравнения изменения вязкости с температурой между различными маслами путем расчета безразмерных чисел, известного как индекс вязкости (VI). Кинематическая вязкость образца измеряется при двух различных температурах (40 ° C, 100 ° C), а вязкость сравнивается с эмпирической эталонной шкалой.VI используется в качестве удобной меры степени удаления ароматических углеводородов в процессе производства базового масла, но сравнение VI различных проб масла реально только в том случае, если они получены из одного и того же дистиллятного сырья [8].

  1. Низкотемпературные свойства.

Когда образец масла охлаждается, его вязкость предсказуемо возрастает до тех пор, пока не начнут формироваться кристаллы парафина. Матрица кристаллов парафина становится достаточно плотной при дальнейшем охлаждении, чтобы вызвать явное затвердевание масла.Хотя затвердевшее масло не льется под действием силы тяжести, оно может двигаться, если приложить достаточную силу. Дальнейшее снижение температуры вызывает образование большего количества парафина, увеличивая сложность восково-масляной матрицы. Многие смазочные масла должны быть текучими при низких температурах, и необходимо измерять ряд свойств.

Это температура, при которой можно обнаружить первые признаки образования парафина. Образец масла достаточно нагрет, чтобы он стал жидким и прозрачным. Затем он охлаждается с заданной скоростью.Температура, при которой впервые наблюдается помутнение, регистрируется как точка помутнения в тесте ASTM D 2500 / IP 219. В пробе масла не должно быть воды, так как она мешает проведению теста.

Это самая низкая температура, при которой образец масла может течь только под действием силы тяжести. Масло нагревается, а затем охлаждается с заданной скоростью. Сосуд для испытания удаляют из охлаждающей бани через определенные промежутки времени, чтобы проверить, остается ли образец еще подвижным. Процедура повторяется до тех пор, пока движение масла не перестанет происходить, ASTM D 97 / IP 15.температура застывания - это последняя температура перед прекращением движения, а не температура, при которой происходит затвердевание. Это важное свойство дизельного топлива, а также базовых масел для смазочных материалов. Масла с высокой вязкостью могут перестать течь при низких температурах, потому что их вязкость становится слишком высокой, а не из-за образования парафина. В этих случаях температура застывания будет выше, чем температура помутнения.

  1. Высокотемпературные свойства.

Высокотемпературные свойства масла зависят от характеристик перегонки или диапазона кипения масла.

Это важно, потому что это показатель тенденции масла теряться в процессе эксплуатации из-за испарения.

Это важно для масла с точки зрения безопасности, потому что это самая низкая температура, при которой происходит самовоспламенение паров над нагретой пробой масла. Используются разные методы, ASTM D 92, D93, и важно знать, какое оборудование использовалось при сравнении результатов.

  1. Другие физические свойства

Могут быть измерены различные другие физические свойства, большинство из которых относятся к специальным смазочным материалам.Вот некоторые из наиболее важных измерений:

Важно, потому что масла могут быть составлены по весу, но измерены по объему.

Способность масла и воды разделяться.

Склонность к пенообразованию и стабильность получаемой пены.

Важно для жидкого теплоносителя.

Резистивная диэлектрическая проницаемость.

По поверхностному натяжению, разделению воздуха.

1.3.2.2. Химические свойства смазочных масел
  1. Легкость пуска Быстрота прогрева.

Легкость запуска зависит главным образом от скорости вращения коленчатого вала, на которую влияет вязкость масла при температуре картера. Основным фактором использования смазочного материала является его вязкость. Недостаточно того, что смазочные материалы должны иметь надлежащую вязкость, но они также должны поддерживать небольшое изменение вязкости в пределах температурного диапазона во время и после этого. Таким образом, вязкость контролирует не только трение и тепловой эффект, но и поток масла в зависимости от скорости нагрузки, температуры и конструкции смазываемого устройства.Другими словами, если оборудование часто не запускается из холодного состояния, также важно, чтобы вязкость при пусковой температуре была не настолько высокой, чтобы машину нельзя было запустить. Скорость, с которой двигатель может быть запущен, зависит от скорости циркуляции и подачи масла к жизненно важным компонентам, все формы износа и даже безопасность двигателя зависят от скорости циркуляции смазочных материалов.

  1. Тенденция к низкоуглеродистому образованию.

Это свойство важно для бензиновых двигателей с высокой степенью сжатия, где нагар отрицательно влияет на качество сгорания.Размер и состав таких образовавшихся отложений вызывают шумное и грубое горение, которое подвергает двигатель высоким тепловым и механическим нагрузкам, что приводит к снижению производительности и сокращению срока службы двигателя. Типичными симптомами являются детонация, преждевременное возгорание и возгорание поверхности. К ним относятся более дорогие виды топлива с более высоким октановым числом, которые не исключают необходимости окончательного обезуглероживания.

Методы определения углеродного остатка.

Укажите некоторые сведения об относительной склонности масла к коксообразованию в некоторых применениях и смазках с контролируемым качеством.Таким образом, испытание может быть полезным при выборе масел для определенных промышленных применений, таких как термическая обработка, смазка подшипников, подвергающихся воздействию высоких температур, и воздушных компрессоров. Утверждается, что наличие вязкого масла (светлого остатка) в базовых маслах играет важную роль в образовании углеродных отложений.

  1. Высокая устойчивость к окислению.

Одним из важнейших требований к смазочному материалу является то, чтобы его свойства не менялись в процессе использования [5-10].Смазка часто подвергается нескольким окислительным условиям, которые в основном связаны с окислительными изменениями масла. В то время как температура масла, наличие кислорода в деталях двигателя, природа побочных продуктов топливного состава способствуют окислительному изменению свойств смазочного материала во время использования. Поэтому очень важно, чтобы смазочное масло; при воздействии высокой температуры; не способствует образованию отложений даже после длительного периода непрерывной работы двигателя. Таким образом, стойкость смазочного материала к окислению в основном зависит от природы смазочного материала и наличия антиоксидантных присадок.

  1. Снижение износа.

Износ в смазываемых системах происходит за счет трех механизмов (истирание, коррозия и контакт металла с металлом, т. Е. Адгезия). Смазка играет важную роль в борьбе с каждым типом износа.

  1. Абразивный износ

Это вызвано тем, что твердые частицы попадают в область между смазываемыми поверхностями и физически разрушают эти поверхности и могут загрязнять фрагменты износа.Чтобы вызвать износ, твердые частицы должны быть больше толщины масляной пленки и тверже смазываемых поверхностей. Промывочное действие смазочного материала, особенно в системах с принудительной подачей или однократной подаче, приводит к удалению потенциально вредных твердых частиц с поверхностей смазываемых поверхностей.

  1. Коррозионный износ

Коррозионный износ обычно вызывается продуктами окисления смазочных материалов. Высокое содержание серы в топливе способствует коррозии.Другими словами, коррозия является основной причиной износа двигателей внутреннего сгорания, потому что продукты сгорания очень кислые и загрязняют смазочное масло, смазочные материалы снижают коррозионный износ двумя способами: надлежащая очистка плюс использование ингибиторов окисления, которые снижает износ смазочного материала и поддерживает низкий уровень продуктов коррозионного окисления.

  1. Адгезионный износ

Этот тип износа может существенно повлиять на определенные части двигателя, в которых происходит контакт металла с металлом.Адгезионный износ имеет место и в том случае, если мощность была увеличена без соответствующих изменений конструкции, отделки и состава металлических деталей. Износ этого типа также является следствием разрыва смазочной пленки. Это также может быть результатом чрезмерной шероховатости поверхности или прерывания подачи смазки. Обильная подача масла соответствующей вязкости часто является лучшим способом избежать этих условий. Состав базового масла и добавление определенных химических присадок также являются важными факторами защиты деталей двигателя от адгезионного износа.

  1. Моющее действие и диспергирование.

За исключением моющих свойств и диспергируемости в камере сгорания, отложения в масле регулируются его моющей способностью. Источников отложений, обнаруживаемых в двигателях, много, и их объем зависит в основном от типа использованного масла и качества горения, температуры смазочного масла и охлаждающей жидкости, а также от газового уплотнения кольца в цилиндре. Если эти отложения не удаляются вместе с маслом при сливе, их накопление в двигателе резко сократит срок его службы.Роль моющих добавок - уменьшить количество образующихся отложений и облегчить их удаление. Моющее свойство, придаваемое маслам с помощью присадок, по-видимому, проявляется по-разному в зависимости от того, являются ли отложения результатом высокой низкой температуры, низкотемпературные отложения в основном образуются при сгорании топлива, а моющая функция заключается в том, чтобы удерживать их в суспензии или растворе в смазочном масле. Однако высокотемпературные отложения в основном связаны с окисленной фракцией масла.

Роль моющих свойств здесь заключается не только в том, чтобы поддерживать эти продукты в суспензии, но и в остановке развития цепных реакций, которые способствуют образованию лаков и лаков. Физические и функциональные свойства смазочного масла будут зависеть от свойств атомов углерода в различных кольцевых структурах и алифатической боковой цепи

  1. Совместимость с уплотнениями

Смазочные материалы часто используются в машинах, где они вступают в контакт резиновое или пластиковое уплотнение.На прочность и степень набухания этих уплотнений может влиять взаимодействие с маслом. Были разработаны различные тесты для измерения влияния базовых масел на различные уплотнения и в различных условиях испытаний [13]. На прочность и степень набухания этих уплотнений может влиять взаимодействие с маслом. Различные тесты измеряют влияние базовых масел на разные уплотнения и в разных условиях испытаний.

1.3.3. Требуемые рабочие характеристики для смазочных масел

Выбор и применение смазочного масла определяются функциями, которые ожидаются от производительности.В одном применении, например, в подшипниках для чувствительных инструментов, уменьшение трения имеет первостепенное значение, а в другом, например при резке металла, контроль температуры может быть наиболее важным. Характеристики смазочного масла или требования к современному высокоскоростному двигателю должны выполнять следующие пять важных функций:

  1. Снижение сопротивления трения:

Снижение сопротивления двигателя до минимума необходимо для обеспечения максимальной механической эффективности. (эксплуатационные расходы транспортного средства или двигателей зависят от вязкости смазочного материала)

  1. Защита двигателя от всех видов износа:

Все пользователи хотят минимальных затрат на техническое обслуживание, увеличения срока службы двигателя и повышения его полезности.Современное масло позволяет увеличить интервалы между пробегами двигателей.

  1. Снижение утечек газа и масла:

Эффективное и длительное сокращение утечек газа и масла необходимо для поддержания рабочих характеристик двигателя и предотвращения фальсификации масла продуктами сгорания.

  1. Обеспечение теплового равновесия двигателя:

В современных двигателях масло функционирует и многое другое как теплообменник, рассеивание тепла не преобразуется в работу.Это часто связано с первой функцией в этом списке, когда вязкое масло дает большее сопротивление трению, а его медленная внутренняя циркуляция приводит к быстрому повышению температуры некоторых жизненно важных частей двигателя для снижения эффективности, масло должно иметь возможность быстро циркулировать.

  1. Удаление всех вредных примесей:

Смазка выполняет функцию защиты двигателя от коррозионного и механического износа, вызываемого всеми вредными примесями.Таким образом, удаление этих примесей смазочными материалами очень важно для двигателя. Функции и соответствующие качества, необходимые для моторных смазочных масел, приведены в таблице (1).

Необходимые основные функции Требуемые качества
Снижение сопротивления трения • Вязкость не слишком высока для обеспечения хорошей прокачиваемости или чрезмерного сопротивления растрескиванию.
• Минимальная вязкость без риска контакта металла с металлом при различных условиях температуры, скорости и нагрузки.
• Достаточно высокая вязкость при высокой температуре; хорошие смазочные свойства вне гидродинамических условий.
• Противозадирные свойства, особенно в период обкатки.
Защищать от коррозии и износа • Должен защищать металлическую поверхность от коррозионного действия продуктов разложения топлива (износ, So 2 , HBr, HCl, и т. Д.)
• Должен противостоять деградации (сопротивляться окислению и иметь хороший термостойкость).
• Должен противодействовать действию продуктов разложения горюче-смазочных материалов при высоких температурах, особенно на цветные металлы.
• Вмешательство в механизм трения должно уменьшить последствия неизбежного контакта металла с металлом.
• Должен противостоять образованию отложений, которые могут повлиять на смазку (моющее или диспергирующее действие).
• Должен способствовать удалению пыли и других загрязняющих веществ (диспергирующее действие).
Вспомогательное уплотнение • Должен иметь достаточную вязкость при высокой температуре и низкую летучесть.
• Должен ограничивать износ.
• Не должен способствовать образованию отложений и бороться с ними.
Способствует охлаждению • Должен иметь хорошую термическую стабильность и стойкость к окислению.
• Должен иметь низкую волатильность.
• Вязкость не должна быть слишком высокой.
Облегчить суспендирование и
исключить нежелательные продукты
• Должен быть в состоянии поддерживать в мелком твердом материале независимо от температуры и физического и химического состояния.

Таблица 1.

Назначение и свойства моторных масел.

1.3.4. Виды смазочных материалов
1.3.4.1. Газообразные смазочные материалы

Газообразные смазочные материалы относятся к самым простым известным смазочным материалам с самой низкой вязкостью и включают воздух, азот, кислород и гелий. Применяются в аэродинамических и аэростатических подшипниках. Поскольку химические свойства и агрегатное состояние большинства газов остаются неизменными в широком диапазоне температур, газообразные смазочные материалы обладают рядом преимуществ перед жидкими смазочными материалами. Во-первых, их можно применять как при очень высоких, так и при очень низких температурах.Их химическая стабильность исключает любой риск загрязнения подшипника смазкой, что важно для оборудования, используемого во многих отраслях промышленности, прежде всего в пищевой, фармацевтической и электронной промышленности.

Полезным свойством газов является то, что их вязкость увеличивается с температурой, тогда как для жидкостей справедливо обратное, в результате чего грузоподъемность подшипников с газовой смазкой увеличивается с температурой. Однако относительно низкая вязкость газов обычно ограничивает несущую способность самодействующих аэродинамических подшипников до 15-20 кПа.Можно добиться лучших характеристик подшипников с газообразными смазочными материалами, чем с жидкими смазочными материалами, благодаря очень низкой вязкости газов, что приводит к меньшему тепловыделению за счет внутреннего трения. В некоторых случаях, например, в воздушных подшипниках из фольги, контакт скольжения возникает во время остановок и пусков [14], поэтому для уменьшения трения используются твердые смазочные материалы, такие как PTFE.

1.3.4.2. Жидкие смазочные материалы

Минеральные масла: Поскольку гидродинамические свойства подшипников скольжения подшипников скольжения полностью зависят от вязкостных характеристик смазочного материала, типичные жидкие смазочные материалы для подшипников представляют собой прямые рафинаты минерального масла различных классов вязкости.Требуемый класс вязкости зависит от частоты вращения подшипника, температуры масла и нагрузки. В таблице (2) приведены общие рекомендации по выбору правильного класса вязкости по ISO. Указанный номер класса ISO является предпочтительным для диапазона скорости и температуры. Масла классов ISO 68 и 100 обычно используются в помещениях с подогревом, а масла класса 42 используются для высокоскоростных агрегатов со скоростью 10.000 об / мин и некоторых наружных низкотемпературных применений. Чем выше частота вращения подшипника, тем ниже требуемая вязкость масла, а также чем выше рабочая температура агрегата, тем выше требуется вязкость масла.Если возможна вибрация или незначительная ударная нагрузка, следует рассмотреть более высокий сорт масла, чем тот, который указан в таблице (2).

Скорость подшипника (об / мин) Температура подшипника / масла (oC)
0-50 60 75 75 -1,500 - 68 100-150 -
1,800 32 32-46 68-100 100
9028 46-68 68-100
10,000 32 32 32 32-46

Таблица 2.

Подшипник скольжения Выбор класса вязкости по ISO

Другие методы определения класса вязкости, необходимые для конкретного применения, заключаются в применении критериев минимальной и оптимальной вязкости к графику зависимости вязкости от температуры. Третий, более сложный метод - это вычисление вязкости масла, необходимой для получения удовлетворительной толщины масляной пленки.

Для смазки подшипников станков обычно требуются минеральные масла ISO VG 46 или 68. Для быстродействующих шлифовальных шпинделей с подшипниками скольжения требуются минеральные масла ISO VG 5 или 7, в зависимости от зазора в подшипниках и числа оборотов.Подшипники, работающие при высоких нагрузках, нуждаются в смазочных материалах ISO VG 68 или 100. Срок службы подшипника может быть увеличен, если вязкость выбранной жидкой смазки при рабочей температуре превышает расчетную оптимальную вязкость.

С другой стороны, повышенная вязкость также увеличивает рабочую температуру. Таким образом, на практике степень улучшения смазки часто ограничена. Химический состав этих масел отличается от типичных базовых масел тем, что они содержат несколько больше ароматических углеводородов и гетероциклических соединений, которые действуют как естественные ингибиторы окисления.Повышенная вязкость нефтей, полученных из одной и той же сырой нефти, существенно не меняет их химический состав; различие обычно заключается в увеличении длины цепи парафиновых углеводородов, в основном изопарафинов, и в алифатических заместителях нафтеновых и ароматических колец, вместе с небольшим увеличением количества нафтеновых и ароматических колец. Более очищенные минеральные масла и ингибиторы окисления используются там, где более высокие температуры или более длительные периоды эксплуатации требуют лучших стабилизаторов старения.

Синтетические смазочные материалы: на практике любое синтетическое масло с соответствующей вязкостью и хорошими вязкостно-температурными характеристиками может использоваться в качестве смазки для подшипников, например Полигликоли - очень хорошие смазочные материалы для подшипников для мельниц и каландров в резиновой, пластмассовой, текстильной и бумажной промышленности. Однако в большинстве случаев синтетические масла, специально разработанные для смазки конкретного оборудования, также используются для смазки его подшипников. Хотя синтетические масла не образуют смазочную пленку под давлением, как минеральные масла, и могут быть неэффективными смазочными материалами для подшипников, несмотря на их более высокую температурную вязкость.

Биоразлагаемые продукты: Биоразлагаемые продукты растительного или животного происхождения также считаются жидкими смазками, например влияние подсолнечного масла, добавленного в базовое масло, на работу опорных подшипников. Использование растительных масел в качестве смазочных материалов, вероятно, будет расти в связи с экологическими и правительственными требованиями и приобретает все большее значение.

1.3.4.3. Твердые смазочные материалы

Общее описание: подшипники, используемые в вакууме, при очень высоких температурах или при очень сильном излучении, нельзя смазывать жидкими смазочными материалами или консистентными смазками.Для этих и многих других случаев используются твердые смазочные материалы, которые считаются любым твердым материалом, используемым для уменьшения трения и износа между двумя движущимися поверхностями.

Как правило, твердый материал размещается в виде пленки между поверхностями скольжения и / или качения. Проще говоря, для особых требований к смазке в экстремальных условиях эксплуатации, таких как очень высокие или очень низкие температуры в широком диапазоне, например, требуется соответствующий твердый материал. От -200 до 850 o C и в агрессивных средах.Такие материалы обычно имеют слоистую кристаллическую структуру, которая обеспечивает низкую прочность на сдвиг, тем самым сводя к минимуму трение. Прочность на сдвиг между кристаллическими слоями мала и устанавливает низкий и устанавливает механизм низкого трения за счет скольжения кристаллических слоев под действием низких сил сдвига. Примерами твердых тел со слоистой решеткой являются дисульфид молибдена, графит, нитрид бора, йодид кадмия и бура. Твердые смазочные материалы используются в основном в виде порошков или связанных твердых пленок.

Хороший смазочный материал с твердой пленкой обладает сильной адгезией к материалу основы подшипника, полным покрытием поверхности и хорошей пластичностью.Он также должен быть химически устойчивым и предотвращать коррозию с учетом условий эксплуатации и окружающей среды. Многие смазочные материалы с твердой пленкой обладают плохой износостойкостью, поскольку любые разрывы пленки не являются самовосстанавливающимися, в отличие от поверхностного покрытия, образованного жидкой смазкой. Усовершенствованные смазочные материалы с твердой пленкой надежно работают во многих конкретных областях, и был накоплен большой опыт, позволяющий лучше понять их ограничения. Чаще всего используются дисульфид, графит, политетрафторэтилен, пропилен.

Другая группа материалов, самосмазывающиеся материалы, относится к твердым смазочным материалам и особенно важна для подшипников. Их самосмазывающиеся свойства исключают необходимость использования консистентной смазки или другой смазки и обеспечивают улучшенные характеристики в условиях высоких температур. В сплавах Graphalloy (графит / матал) используются особые свойства графита, структуру которого можно сравнить с колодой карт с отдельными слоями, которые могут легко соскользнуть. Это явление придает материалу способность к самосмазке, сопоставимую с некоторыми другими материалами, и позволяет удалить жир или масло, которые испаряются, застывают или затвердевают, вызывая преждевременный выход из строя.Графитовая матрица может быть заполнена различными встроенными смазочными материалами для улучшения химических, механических и трибологических свойств, чтобы обеспечить постоянный низкий коэффициент трения, а не только поверхностный слой, помогая защитить от катастрофического отказа. Смазка поддерживается во время линейного движения, когда смазка не растрескивается и пыль не втягивается.

Недавняя разработка твердых смазочных материалов для подшипников - это микропористые полимерные смазки, MPL, где полимер, содержащий непрерывную микропористую сетку, имеет масло, содержащееся внутри поры, в которые могут входить соответствующие добавки [14].Содержание масла в полимере может составлять более 50% по весу, и микропористый полимер действует как спонж, высвобождая и абсорбируя масло, когда это необходимо.

1.3.5. Примеси и загрязнения смазочного материала

Содержание воды (ASTM D95, D1744, D1533 и D96) - это количество воды, присутствующей в смазке. Он может быть выражен в миллионных долях, объемных или массовых процентах. Его можно измерить с помощью центрифугирования, дистилляции и вольтаметрии. Самым популярным, хотя и наименее точным методом оценки содержания воды является центрифужный тест.В этом методе 50% смесь масла и растворителя центрифугируется с указанной скоростью до тех пор, пока наблюдаемые объемы воды и осадка не станут стабильными. Помимо воды, твердые вещества и другие растворимые вещества также разделяются, и полученные результаты плохо коррелируют с результатами, полученными двумя другими методами. Метод перегонки более точен и предполагает перегонку масла, смешанного с ксилолом. Любая вода, присутствующая в образце, конденсируется в градуированном приемнике. Метод вольтаметрии является наиболее точным.Он использует электрометрическое титрование, дающее концентрацию воды в частях на миллион.

Коррозионные и окислительные свойства смазочных материалов в значительной степени зависят от содержания воды. Масло, смешанное с водой, дает эмульсию. Эмульсия имеет гораздо более низкую несущую способность, чем чистое масло, и может произойти отказ смазки с последующим повреждением рабочих поверхностей. Как правило, в таких применениях, как масляные системы турбин, предел содержания воды составляет 0,2%, а для гидравлических систем 0,1%.В диэлектрических системах чрезмерное содержание воды оказывает существенное влияние на пробой диэлектрика. Обычно содержание воды в таких системах должно быть ниже 35 [ppm].

Содержание серы (ASTM D1266, D129, D1662) - это количество серы, присутствующей в масле. Это может иметь как положительные, так и отрицательные эффекты на работающее оборудование. Сера - очень хороший пограничный агент, который может эффективно работать в экстремальных условиях давления и температуры. С другой стороны, он очень едкий.Обычно для определения содержания серы используется метод окисления в бомбе. Он включает воспламенение и сгорание небольшого образца масла под давлением кислорода. Сера из продуктов сгорания извлекается и взвешивается.

В смазке присутствует некоторое количество негорючего материала, которое может быть определено путем измерения количества золы, оставшейся после сгорания масла (ASTM D482, D874). Загрязнениями могут быть продукты износа, твердые продукты разложения топлива или смазки, атмосферная пыль, проникающая через фильтр и т. Д.Некоторые из этих загрязнений удаляются масляным фильтром, но некоторые оседают в масле. Для определения количества загрязнителя проба масла сжигается в специально сконструированной емкости. Остающийся остаток затем золится в высокотемпературной муфельной печи, и результат отображается в процентах от исходного образца. Зольность используется как средство контроля масел на предмет нежелательных примесей и иногда присадок. В отработанных маслах он также может указывать на загрязнения, такие как грязь, продукты износа и т. Д.

Количество хлора в смазке должно быть на оптимальном уровне. Избыточный хлор вызывает коррозию, тогда как недостаточное количество хлора может вызвать износ и увеличение потерь на трение. Содержание хлора (ASTM D808, D1317) может быть определено либо с помощью бомбы, которая обеспечивает гравиметрическую оценку, либо с помощью волюметрического теста, который определяет содержание хлора, после реакции с металлическим натрием с образованием хлорида натрия, затем титрования нитридом серебра [14].

.

нефтепереработка | Определение, история, процессы и факты

История

Перегонка керосина и нафты

Переработка сырой нефти обязана своим происхождением успешному бурению первых нефтяных скважин в Онтарио, Канада, в 1858 г. и в Титусвилле, штат Пенсильвания, США, в 1859 г. До этого времени нефть была доступна только в очень небольших количествах из естественное просачивание подземной нефти в различные районы мира. Однако такая ограниченная доступность ограничивала использование нефти в медицинских и специальных целях.С открытием «каменной нефти» на северо-западе Пенсильвании сырая нефть стала доступной в достаточном количестве, чтобы вдохновить на разработку крупномасштабных систем переработки. На самых ранних нефтеперерабатывающих заводах использовались простые перегонные установки, или «кубы», для разделения различных компонентов нефти путем нагревания смеси сырой нефти в емкости и конденсации образовавшихся паров в жидкие фракции. Первоначально основным продуктом был керосин, который оказался более распространенным, более чистым ламповым маслом и более стабильным качеством, чем китовый жир или животный жир.

Самым низкокипящим сырьевым продуктом из перегонного куба была прямогонная нафта, предшественник необработанного бензина (бензина). Его первоначальное коммерческое применение было в первую очередь в качестве растворителя. Было обнаружено, что высококипящие материалы эффективны в качестве смазочных материалов и жидкого топлива, но поначалу они были в основном новинками.

Совершенствование техники бурения нефтяных скважин быстро распространилось на Россию, и к 1890 году нефтеперерабатывающие заводы уже производили большое количество керосина и мазута. Развитие двигателя внутреннего сгорания в последние годы XIX века привело к появлению небольшого рынка сырой нафты.Но развитие автомобилей на рубеже веков резко увеличило спрос на качественный бензин, и это, наконец, предоставило пристанище нефтяным фракциям, которые были слишком летучими для включения в керосин. По мере роста спроса на автомобильное топливо были разработаны методы непрерывной перегонки сырой нефти.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Переход на легкое топливо

После 1910 года спрос на автомобильное топливо стал превышать потребности рынка в керосине, и нефтепереработчики были вынуждены разрабатывать новые технологии для увеличения выхода бензина.Самый ранний процесс, называемый термическим крекингом, заключался в нагревании более тяжелых нефтей (для которого требовалось мало рыночных требований) в реакторах под давлением и, таким образом, крекинге или расщеплении их больших молекул на более мелкие, которые образуют более легкие и более ценные фракции, такие как бензин, керосин и легкое промышленное топливо. Бензин, полученный путем крекинга, лучше работает в автомобильных двигателях, чем бензин, полученный прямой перегонкой сырой нефти. Разработка более мощных авиадвигателей в конце 1930-х годов вызвала потребность в повышении характеристик сгорания бензина и стимулировала разработку топливных присадок на основе свинца для улучшения характеристик двигателя.

В 1930-е годы и во время Второй мировой войны сложные процессы очистки с использованием катализаторов привели к дальнейшему повышению качества транспортного топлива и дальнейшему увеличению его предложения. Эти усовершенствованные процессы, включая каталитический крекинг тяжелых масел, алкилирование, полимеризацию и изомеризацию, позволили нефтяной промышленности удовлетворить потребности в высокопроизводительных боевых самолетах и, после войны, поставлять все большее количество транспортного топлива.

1950-е и 60-е годы вызвали большой спрос на авиационное топливо и высококачественные смазочные масла.Продолжающийся рост спроса на нефтепродукты также усилил потребность в переработке более широкого спектра сырой нефти в высококачественные продукты. Каталитический риформинг нафты заменил более ранний процесс термического риформинга и стал ведущим процессом для улучшения качества топлива для удовлетворения потребностей двигателей с более высокой степенью сжатия. Гидрокрекинг, процесс каталитического крекинга, проводимый в присутствии водорода, был разработан как универсальный производственный процесс для увеличения выхода бензина или реактивного топлива.

К 1970 году нефтеперерабатывающая промышленность прочно утвердилась во всем мире. Поставка сырой нефти, которая должна быть переработана в нефтепродукты, достигла почти 2,3 миллиарда тонн в год (40 миллионов баррелей в день), при этом основная концентрация нефтеперерабатывающих заводов сосредоточена в большинстве развитых стран. Однако, когда мир осознал влияние промышленного загрязнения на окружающую среду, нефтеперерабатывающая промышленность стала основным направлением изменений. Нефтепереработчики добавили установки гидроочистки для извлечения соединений серы из своей продукции и начали производить большие количества элементарной серы.Сточные воды и выбросы в атмосферу углеводородов и продуктов сгорания также стали предметом повышенного технического внимания. Кроме того, пристальному вниманию подверглись многие очищенные продукты. Начиная с середины 1970-х годов, нефтеперерабатывающие предприятия в Соединенных Штатах, а затем и во всем мире были обязаны разрабатывать технологии производства высококачественного бензина без использования свинцовых присадок, а начиная с 1990-х годов от них требовалось делать значительные инвестиции в полное производство бензина. изменение состава транспортных топлив с целью минимизации выбросов в окружающую среду.Из отрасли, которая когда-то производила единственный продукт (керосин) и утилизировала нежелательные побочные продукты любым возможным способом, нефтепереработка превратилась в одну из наиболее строго регулируемых отраслей обрабатывающей промышленности в мире, тратя большую часть своих ресурсов на сокращение его воздействие на окружающую среду, поскольку он перерабатывает около 4,6 миллиарда тонн сырой нефти в год (примерно 80 миллионов баррелей в день).

.

Смазочное масло - определение смазочного масла по The Free Dictionary

Он бродил по гладким лужайкам с Клэр, сидел с ней на деревенских скамейках и осторожно говорил о смазочном масле. Были моменты, когда Клэр почти вынуждала отказаться от своего шанса стать хозяйкой тридцати миллионов долларов и процветающего бизнеса ради удовлетворения всего лишь одной искренней шлепкой по его круглой и тонко покрытой голове. положительный рост показали дизельное топливо, смазочные масла.И сжиженный нефтяной газ. «Уровень смазочного масла в цистернах был в установленных пределах, но относительно низок, когда судно начало пересекать Хустадвику», - добавил он, имея в виду участок воды, на котором произошел инцидент. При контакте с кислотными парами, образующимися при сгорании, он загрязняется и может вызвать коррозию поверхности подшипников. Согласно отчету полиции, в магазин зашли двое мужчин и хотели купить емкость смазочного масла для автомобиля.С другой стороны, производство мазута для реактивных двигателей в течение месяца снизилось на 7,60 процента, керосинового масла на 15,12 процента, а производство смазочного масла снизилось на 2,14 процента. Испытанное масло для авиационных двигателей представляет собой разновидность синтетического смазочного масла с диизооктилом. себацинат (DIOS) в качестве масла на его основе, которое широко используется в определенных типах систем смазки авиационных двигателей. 9 Формула синтетического смешанного смазочного масла доступна в объеме 2,25 унции. В худшем случае компрессоры могут перестать работать из-за По его словам, к истощению смазочного масла, что приводит к остановке двигателей во время движения транспортных средств с низкой скоростью.Италия.Комиссия считает, что итальянское налоговое законодательство в отношении регенерированного смазочного масла из других стран-членов является дискриминационным. Когда автомобиль находится в движении, его смазочное масло вступает в химические реакции с воздухом и побочными продуктами сгорания. Переработанные пластиковые бутылки могут использоваться для смазки. автомобильные двигатели, рассказывают исследователи из Chevron Energy Technology Company, Ричмонд, Калифорния, и Университета Кентукки, Лексингтон, которые в лабораторных экспериментах превратили отработанный пластик в смазочное масло..

Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)