Какой вязкости масло лучше заливать в двигатель


Вязкость моторного масла - что это такое, расшифровка по SAE

Большинство автолюбителей знает, что при выборе смазочных материалов наиболее важным параметром является вязкость масла.

Однако, не все понимают значение цифр, которые имеются на канистрах.

Моторная смазка подвергается воздействию довольно высокой температуре как внутри самого двигателя, так и извне.

Вязкость как один из важнейших параметров моторного масла

Всю необходимую информацию производители указывают на этикетке, поэтому необходимо уметь ее читать и анализировать.

Кроме всего прочего, следует различать саму вязкость, которая бывает как кинематической, так и динамической. Типы вязкости имеют определенные различия. Они заключаются в плотности, отличающихся методах измерения и предназначены для определения показателей различных классов смазки.

Кинематическая вязкость моторного масла определяет его текучесть при нормальной (стандартной) рабочей температуре, а также максимальной. За основу проведения испытаний берут 40 и 100 градусов по Цельсию, а измерения проводятся в сантистоксах.

По полученным результатам осуществляются расчеты индекса вязкости, поэтому, если вы хотите приобрести действительно хорошее масло — выбирайте, чтобы индекс превышал значение 200. Чаще всего наиболее подходящий индекс имеют всесезонные масла.

Что касается динамической вязкости — то она отображает силу сопротивления в ходе перемещения жидкостей, которая от плотности никак не зависит. Единицей измерения динамической вязкости является сантипуаз.

Ниже приведена таблица вязкости моторного масла для работы двигателя в холодных условиях.

Основные параметры вязкости

Одним из основных параметров являются низкотемпературные показатели.

К данным показателям относятся следующие:

  • проворачиваемость;
  • прокачиваемость.

Первый определяет диапазон текучести при низких температурах и указывает на то, какой должна быть максимально допустимая динамическая вязкость. Последняя позволяет коленчатому валу вращаться с такой скоростью, которая обеспечивает хороший запуск двигателя.

Прокачиваемость всегда имеет значение, которое на 5˚С ниже необходимой. Это нужно для того, чтобы масляный насос не начал закачивать воздух вследствие чрезмерного загустевания смазочной жидкости. Параметры прокачиваемости не должны превышать значения в 60000 мПа*с.

Если вы хотите разобраться в том, как определить вязкость моторного масла — следует познакомиться с таким понятием, как спецификация SAE. Это принятый в большинстве стран стандарт, определяющий необходимый уровень вязкости смазки при том или ином температурном режиме.

Вот таблица , где показано, какая классификация соответствует определенной температуре воздуха.

Международный стандарт вязкости масел

О важности такого свойства, как вязкость масла, стало известно еще с тех времен, как был выпущен первый автомобиль. С тех самых времен инженеры пытались произвести классификацию смазочных материалов. Основываясь на определенных качествах, все имевшиеся масла были разделены на следующие типы:

  • маловязкие смазки
  • средневязкие
  • тяжелые

После того, как были изобретены подходящие для определения вязкости приборы — американским обществом автомобильных инженеров (SAE) была разработана наиболее точная классификация — SAE J300.

Данная классификация моторных масел в процессе своего развития претерпевала определенные изменения и сегодня представляет 11 классов вязкости.

Их полный список выглядит следующим образом:

  1. SAE 0W;
  2. SAE 5W;
  3. SAE 10W;
  4. SAE 15W;
  5. SAE 20W;
  6. SAE 25W;
  7. SAE 20;
  8. SAE 30;
  9. SAE 40;
  10. SAE 50;
  11. SAE 60.

В связи с этим, классы вязкости моторных масел стали в спецификации SAE по степени вязкости, которая определяется условиями, близкими к реально существующим. Вследствие этого и произошло разделение масел на летние и зимние виды.

Летние смазки не имеют буквенного обозначения и обладают более высокой вязкостью, вследствие чего обеспечивают качественную смазку всех деталей двигателя при высокой температуре окружающей среды.

Однако, при низких температурах такие масла становятся чересчур плотными и создают серьезную проблему при запуске холодного двигателя.

Зимнее масло является менее вязким, благодаря чему проблем при холодном пуске двигателя не возникает. Зато в жаркое время года оно становится слишком текучим, поэтому не в состоянии обеспечить детали силового агрегата должной защитой.

Благодаря изобретению всевозможных присадок, появилась новая категория масел, объединивших в себе хорошее соотношение зимних и летних характеристик. Такие смазывающие материалы получили название всесезонных.

Виды масел в зависимости от температурного режима

Вязкость определяется по международному стандарту SAE J300 и подразделяет все смазочные материалы на три основных вида — летние, зимние и всесезонные.

К летним относятся масла, имеющие следующий показатель SAE:

Зимние смазки имеют свои преимущества:

  • невысокая стоимость;
  • невысокая вязкость, благодаря которой запуск холодного двигателя при минусовой температуре происходит лучше, чем с применением всесезонных жидкостей;
  • высокая стойкость к деструкции.
  • К ним относятся следующие виды:
  • SAE 0W;
  • SAE 5W;
  • SAE 10W;
  • SAE 15W;
  • SAE 20W.

Самыми распространенными являются всесезонные жидкости. Они также имеет свои достоинства, а наиболее главным следует считать его использование в любое время года. Благодаря имеющимся в составе полимерным присадкам, оно способно изменять степень вязкости относительно окружающей температуры. Кроме того, оно имеет хорошие энергосберегающие свойства, благодаря которым силовой агрегат работает в жаркую погоду более экономичней, чем при использовании летнего типа масел.

Всесезонные:

  • SAE 0W-30;
  • SAE 0W-40;
  • SAE 5W-30;
  • SAE 5W-40;
  • SAE 10W-30;
  • SAE 10W-40;
  • SAE 15W-40;
  • SAE 20W-40.

Благодаря прекрасно сбалансированным показателям, всесезонки показывают хорошие результаты в работе с критическими температурами.

Для того, чтобы подобрать для двигателя своего автомобиля наиболее подходящее по вязкости масло — следует опираться на два основных показателя:

  • в каких климатических условиях эксплуатируется автомобиль;
  • сколько лет эксплуатируется двигатель.

Опираясь на первый показатель, для регионов с высокой температурой воздуха следует выбирать жидкости с более высоким показателем вязкости. Данный параметр представлен цифрой, находящейся перед буквой «W».

Так, к примеру, при эксплуатации транспортного средства при температуре воздуха от -10 и до +45 следует выбирать SAE 20W-40.

Второй параметр: в этом случае следует выбирать смазку согласно выработанному ресурсу двигателя. Так для нового двигателя следует подбирать меньшую вязкость, а для мотора постаршеболее вязкое масло. Это необходимо для того, чтобы более выработанные детали, имеющие между собой значительно увеличенные зазоры, могли более или менее нормально функционировать.

Помните, что любая смазка содержит показатели вязкости как при низких, так и при высоких температурах, поэтому при выборе это следует обязательно учитывать. Чем выше первая цифра (стоящая перед буквой W), тем рабочий диапазон на низких температурах будет меньше. Чтобы произвести расчеты — необходимо от цифры 40 отнять первый показатель смазки.

К примеру, жидкость со значением 5W20 имеет температурный диапазон -35˚ С и -30˚ С.

Второе число, расположенное после буквы «W», дает понятие высокотемпературной вязкости. Если не вдаваться в технические тонкости, то можно сказать так — чем больше второе значение — тем выше будет вязкость масла при высоких температурах.

Диапазоны рабочих температур для разных масел по SAE

Основываясь на спецификацию SAE, все смазывающие жидкости можно расшифровать по температурному режиму и определить для себя диапазон их использования.

По классу вязкости и температурному режиму жидкости имеют следующий диапазон:

  • 5 W-30 — предназначена для работы при температуре от -25˚ С и до +20˚ С;
  • 5 W-40 — предназначена для работы от -25˚ С и до +35˚ С;
  • 10 W-30 — предназначена для работы от -20˚ С и до +30˚ С;
  • 10 W-40 — предназначена для работы от -20˚ С и до +35˚ С;
  • 15 W-30 — подходит для работы при температуре воздуха от -15˚ С и до +35˚ С;
  • 15 W-40 — подходит для работы при температуре воздуха от -15˚ С и до +45˚ С;
  • 20 W-40 — подходит для работы при температуре воздуха от -10˚ С и до +45˚ С;
  • 20 W-50 — подходит для работы при температуре воздуха от -10˚ С до +45˚ С и более.

Однако, в подборе наиболее подходящего масла для своего транспортного средства, в первую очередь необходимо руководствоваться информацией, которую предоставляет завод изготовитель.

Выбор моторного масла по его вязкости

Подбор необходимого масла строго индивидуален и направлен на определенный двигатель. Поэтому в первую очередь следует ориентироваться на те указания и рекомендации, которые сделал производитель в технической документации к тому или иному автомобилю.

Помните, что только оригинальное масло либо его качественный аналог способны обеспечить двигатель хорошей работой и максимальным износом деталей.

В том случае, если данного рода документация отсутствует — ориентироваться следует на указанные допуски масла в отношении определенных двигателей, которые, чаще всего, имеются на этикетке производителя.

Видео по теме:

Вязкость масла - PetroWiki

Абсолютная вязкость является мерой внутреннего сопротивления жидкости потоку. Для жидкостей вязкость соответствует неформальному понятию «толщина». Например, мед имеет более высокую вязкость, чем вода.

Для любых расчетов движения жидкостей требуется значение вязкости. Этот параметр необходим для условий от наземных систем сбора до резервуара. Можно ожидать, что корреляции для расчета вязкости позволят оценить вязкость в диапазоне температур от 35 до 300 ° F.

Ньютоновские жидкости

Жидкости, вязкость которых не зависит от скорости сдвига, описываются как ньютоновские жидкости. Корреляции вязкости, обсуждаемые на этой странице, применимы к ньютоновским жидкостям.

Факторы, влияющие на вязкость

Основными факторами, влияющими на вязкость, являются:

  • Состав масла
  • Температура
  • Растворенный газ
  • Давление

Состав масла

Обычно состав нефти описывается только плотностью API.Использование плотности в градусах API и характеристического фактора Ватсона обеспечивает более полное описание нефти. Таблица 1 показывает пример масла с плотностью 35 ° API, который указывает на взаимосвязь вязкости и химического состава, напоминая, что характеристический фактор 12,5 отражает высокопарафиновые масла, а значение 11,0 указывает на нафтеновое масло. Очевидно, что химический состав, помимо плотности в градусах API, играет роль в поведении вязкости сырой нефти. На рис. 1 показано влияние характеристического фактора сырой нефти на вязкость мертвой нефти. В целом характеристики вязкости предсказуемы. Вязкость увеличивается с уменьшением удельного веса по API сырой нефти (при условии постоянного характеристического коэффициента Уотсона) и с понижением температуры. Воздействие растворенного газа заключается в снижении вязкости. Выше давления насыщения вязкость увеличивается почти линейно с давлением. На рис. 2 представлена ​​типичная форма вязкости пластовой нефти при постоянной температуре.

  • Рис. 1 - Вязкость мертвого масла в зависимости от плотности в градусах API и характеристического коэффициента Ватсона.

  • Рис. 2 - Типичная кривая вязкости масла.

Расчет вязкости

Для расчетов вязкости живых пластовых масел требуется многоступенчатый процесс, включающий отдельные корреляции для каждого этапа процесса. Вязкость мертвой или безгазовой нефти определяется как функция плотности и температуры сырой нефти по API.Вязкость насыщенной газом нефти определяется как функция вязкости мертвой нефти и газового фактора раствора (ГФ). Вязкость ненасыщенной нефти определяется как функция вязкости газонасыщенной нефти и давления выше давления насыщения.

Фиг. 3 и 4 суммируют все корреляции вязкости мертвого масла, описанные в таблицах 2, и 3 . [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] ) [21] [22] [23] [24] [25] Результаты, предоставленные Рис.4 показывают, что метод, предложенный в Стандарте [23] , не подходит для сырой нефти с плотностью менее 28 ° API. Аль-Кафаджи и др. Метод [10] не подходит для нефти с плотностью менее 15 ° API, в то время как метод Беннисона [21] , разработанный в основном для нефти Северного моря с низкой плотностью API, не подходит для нефти с плотностью выше 30 ° API. .

  • Рис. 3 - Зависимость вязкости мертвого масла от температуры.

  • Фиг.4 - Вязкость мертвого масла в зависимости от плотности в градусах API.

Сравнение различных методов

На рис. 5 представлен аннотированный список наиболее часто используемых методов корреляции для расчета вязкости. Результаты иллюстрируют тенденцию изменения вязкости и температуры мертвого масла. При понижении температуры вязкость увеличивается. При температурах ниже 75 ° F метод Беггса и Робинсона [5] значительно переоценивает вязкость, в то время как метод Стэндинга фактически показывает уменьшение вязкости.Эти тенденции делают эти методы непригодными для использования в диапазоне температур, связанном с трубопроводами. Метод Била [3] [4] был разработан на основе наблюдений за вязкостью мертвого масла при 100 и 200 ° F и имеет тенденцию недооценивать вязкость при высокой температуре. Корреляции вязкости мертвой нефти несколько неточны, потому что они не учитывают химическую природу сырой нефти. Только методы, разработанные Стэндингом [23] и Фитцджеральдом [18] [19] [20] , учитывают химическую природу сырой нефти за счет использования характеристического фактора Ватсона.Метод Фитцджеральда был разработан для широкого диапазона условий, как подробно описано в таблицах 2, и 3 , и является наиболее универсальным методом, подходящим для общего использования корреляций, перечисленных в этой таблице. Глава 11 Справочника технических данных API - Переработка нефти [19] включает график, показывающий область применимости метода Фитцджеральда.

  • Рис. 5 - Аннотированный список обычно используемых корреляций вязкости мертвого масла.

Метод Андраде [1] [2] основан на наблюдении, что логарифм вязкости в зависимости от обратной абсолютной температуры образует линейную зависимость от точки, немного превышающей нормальную точку кипения, до точки, близкой к точке замерзания масла, как показано на рис. 6 . Метод Андраде применяется посредством использования измеренных точек данных вязкости мертвого масла, полученных при низком давлении и двух или более температурах. Данные следует получать при температурах в интересующем диапазоне.Этот метод рекомендуется при наличии данных о вязкости мертвого масла.

  • Рис. 6 - Вязкость мертвого масла в зависимости от обратной абсолютной температуры.

Методы определения вязкости масла до точки пузыря

Таблицы 4 и 5 [5] [7] [8] [10] [11] [12] [13] [14] [15] [16] [17] [22] [23] [24] [25] [26] [27] [28] ) [29] предоставляют полное описание методов определения вязкости нефти до точки кипения.

Корреляции для вязкости масла при температуре кипения обычно принимают форму, предложенную Chew and Connally. [26] Этот метод формирует корреляцию с вязкостью мертвого масла и газовым фактором раствора, где A и B определяются как функции газового фактора раствора.

.................... (1)

Фиг. 7 и 8 показаны корреляции для параметров A и B, разработанные разными авторами. Фиг.9 показывает влияние параметров корреляции A и B на прогноз вязкости. Этот график был разработан для вязкости мертвого масла 1,0 сП, чтобы можно было изучить влияние газового фактора раствора. Корреляции, предложенные Labedi, [7] [8] Khan et al. , [28] и Almehaideb [29] специально не используют вязкость мертвого масла и газовый фактор раствора и не были включены в этот график.

  • Фиг.7– Параметр корреляции вязкости при температуре пузыря A.

  • Рис. 8 - Параметр корреляции вязкости при температуре пузыря B.

  • Рис. 9 - Вязкость масла до точки пузыря в зависимости от газового фактора раствора.

Корреляция для недонасыщенного масла

Когда давление увеличивается выше точки кипения, масло становится недонасыщенным. В этой области вязкость масла увеличивается почти линейно с увеличением давления. Таблицы 6 и 7 [3] [4] [7] [8] [11] [12] [13] [14] [ 15] [16] [17] [19] [22] [25] [29] [30] [31] [32] [ 33] предоставляют корреляции для моделирования вязкости ненасыщенной нефти. Рис. 10 представляет собой визуальное сравнение методов.

  • Рис. 10 - Вязкость ненасыщенного масла в зависимости от давления.

Номенклатура

μ ob = Вязкость масла при температуре кипения, м / л, сП
мкм од = Вязкость мертвого масла, м / л, сП

Список литературы

  1. 1.0 1,1 Andrade, E.N. да C. 1930. Вязкость жидкостей. Природа 125: 309–310. http://dx.doi.org/10.1038/125309b0
  2. 2,0 2,1 Reid, R.C., Prausnitz, J.M., and Sherwood, T.K. 1977. Свойства газов и жидкостей, третье издание, 435–439. Нью-Йорк: Высшее образование Макгроу-Хилла.
  3. 3,0 3,1 3,2 Бил, К. 1970. Вязкость воздуха, воды, природного газа, сырой нефти и ее попутных газов при температурах и давлениях нефтяного месторождения, No.3, 114–127. Ричардсон, Техас: Серия репринтов (Оценка нефтегазовой собственности и оценка запасов), SPE. Ошибка цитирования: недопустимый тег ; имя "r3" определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя "r3" определено несколько раз с разным содержанием
  4. 4,0 4,1 4,2 Стоя, М. 1981. Объемное и фазовое поведение углеводородных систем нефтяных месторождений, девятое издание. Ричардсон, Техас: Общество инженеров-нефтяников AIME
  5. 5.0 5,1 5,2 Beggs, H.D. и Робинсон, Дж. Р. 1975. Оценка вязкости нефтяных систем. J Pet Technol 27 (9): 1140-1141. SPE-5434-PA. http://dx.doi.org/10.2118/5434-PA
  6. ↑ Glasø, Ø. 1980. Обобщенные корреляции давления, объема и температуры. J Pet Technol 32 (5): 785-795. SPE-8016-PA. http://dx.doi.org/10.2118/8016-PA
  7. 7,0 7,1 7,2 7,3 Лабеди Р. 1982. PVT-корреляции африканской сырой нефти.Кандидатская диссертация. 1982 г. Докторская диссертация, Колорадская горная школа, Ледвилл, Колорадо (май 1982 г.).
  8. 8,0 8,1 8,2 8,3 Лабеди, Р. 1992. Улучшенные корреляции для прогнозирования вязкости легкой нефти. J. Pet. Sci. Англ. 8 (3): 221-234. http://dx.doi.org/10.1016/0920-4105(92)
  9. -Y
  10. ↑ Нг, J.T.H. и Эгбогах, Э. 1983. Улучшенная корреляция вязкости и температуры для сырой нефти. Представлено на ежегодном техническом совещании, Банф, Канада, 10–13 мая.PETSOC-83-34-32. http://dx.doi.org/10.2118/83-34-32
  11. 10,0 10,1 10,2 Аль-Хафаджи, А.Х., Абдул-Маджид, Г.Х. и Хассун, С.Ф. 1987. Корреляция вязкости для мертвой, живой и ненасыщенной сырой нефти. J. Pet. Res. (Декабрь): 1–16.
  12. 11,0 11,1 11,2 Петроски Г. Jr. 1990. PVT-корреляции для сырой нефти Мексиканского залива. Магистерская диссертация. 1990 г. Докторская диссертация, Университет Юго-Западной Луизианы, Лафайет, Луизиана.
  13. 12,0 12,1 12,2 Петроски Г. Младший и Фаршад, Ф.Ф. 1995. Корреляции вязкости для сырой нефти Мексиканского залива. Представлено на симпозиуме SPE по производственным операциям, Оклахома-Сити, Оклахома, США, 2-4 апреля. SPE-29468-MS. http://dx.doi.org/10.2118/29468-MS
  14. 13,0 13,1 13,2 Kartoatmodjo, R.S.T. 1990. Новые соотношения для оценки свойств жидких углеводородов. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  15. 14,0 14,1 14,2 Kartoatmodjo, T.R.S. и Шмидт, З. 1991. Новые корреляции физических свойств сырой нефти, Общество инженеров-нефтяников, незапрошенная статья 23556-MS.
  16. 15,0 15,1 15,2 Картоатмоджо, Т. и З., С. 1994. Большой банк данных улучшает грубые корреляции физических свойств. Oil Gas J. 92 (27): 51–55.
  17. 16,0 16,1 16,2 Де Гетто, Г.и Вилла, М. 1994. Анализ надежности корреляций PVT. Представлено на Европейской нефтяной конференции, Лондон, Великобритания, 25-27 октября. SPE-28904-MS. http://dx.doi.org/10.2118/28904-MS
  18. 17,0 17,1 17,2 Де Гетто, Г., Паоне, Ф. и Вилла, М., 1995. Корреляция давления-объема-температуры для тяжелых и сверхтяжелых масел. Представлено на Международном симпозиуме по тяжелой нефти SPE, Калгари, 19-21 июня. SPE-30316-MS. http://dx.doi.org/10.2118/30316-MS
  19. 18,0 18,1 Фитцджеральд, Д.Дж. 1994. Метод прогнозирования для оценки вязкости неопределенных углеводородных жидких смесей. Докторская диссертация, Государственный университет Пенсильвании, Государственный колледж, Пенсильвания.
  20. 19,0 19,1 19,2 19,3 Daubert, T.E. и Даннер, Р. П. 1997. Книга технических данных API - Переработка нефти, 6-е издание, гл. 11. Вашингтон, округ Колумбия: Американский институт нефти (API).
  21. 20.0 20,1 Саттон, Р.П. и Фаршад, Ф. 1990. Оценка эмпирически полученных свойств PVT для сырой нефти Мексиканского залива. SPE Res Eng 5 (1): 79-86. SPE-13172-PA. http://dx.doi.org/10.2118/13172-PA
  22. 21,0 21,1 Беннисон Т. 1998. Прогноз вязкости тяжелой нефти. Представлено на конференции IBC по разработке месторождений тяжелой нефти, Лондон, 2–4 декабря.
  23. 22,0 22,1 22,2 Эльшаркави, А. и Алихан А.A. 1999. Модели для прогнозирования вязкости ближневосточной сырой нефти. Топливо 78 (8): 891–903. http://dx.doi.org/10.1016/S0016-2361(99)00019-8
  24. 23,0 23,1 23,2 23,3 Whitson, C.H. и Брюле, М.Р. 2000. Фазовое поведение, № 20, гл. 3. Ричардсон, Техас: Серия монографий Генри Л. Доэрти, Общество инженеров-нефтяников.
  25. 24,0 24,1 Бергман Д.Ф. 2004. Не забывайте вязкость. Представлено на 2-м ежегодном симпозиуме по разработке месторождений Совета по передаче нефтяных технологий, Лафайет, Луизиана, 28 июля.
  26. 25,0 25,1 25,2 Диндорук Б. и Кристман П.Г. 2001. PVT-свойства и корреляции вязкости нефтей Мексиканского залива. Представлено на Ежегодной технической конференции и выставке SPE, Новый Орлеан, 30 сентября - 3 октября. SPE-71633-MS. http://dx.doi.org/10.2118/71633-MS
  27. 26,0 26,1 Chew, J. and Connally, C.A. Jr. 1959. Корреляция вязкости для газонасыщенной сырой нефти. В трудах Американского института инженеров горной, металлургической и нефтяной промышленности, Vol.216, 23. Даллас, Техас: Общество инженеров-нефтяников AIME.
  28. ↑ Азиз, К. и Говье, Г.В. 1972. Падение давления в скважинах, добывающих нефть и газ. J Can Pet Technol 11 (3): 38. PETSOC-72-03-04. http://dx.doi.org/10.2118/72-03-04
  29. 28,0 28,1 Хан, С.А., Аль-Мархун, М.А., Даффуаа, С.О. и другие. 1987. Корреляции вязкости для сырой нефти Саудовской Аравии. Представлен на выставке Middle East Oil Show, Бахрейн, 7-10 марта. SPE-15720-MS. http://dx.doi.org/10.2118/15720-МС
  30. 29,0 29,1 29,2 Almehaideb, R.A. 1997. Улучшенная корреляция PVT для сырой нефти ОАЭ. Представлено на выставке и конференции Middle East Oil Show, Бахрейн, 15-18 марта. SPE-37691-MS. http://dx.doi.org/10.2118/37691-MS Ошибка цитирования: недопустимый тег ; имя "r29" определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя "r29" определено несколько раз с разным содержанием
  31. ↑ Кузель, Б.1965. Как давление влияет на вязкость жидкости. Hydrocarb. Процесс. (Март 1965 г.): 120.
  32. ↑ Васкес М.Э. 1976. Корреляции для предсказания физических свойств жидкости. Диссертация на степень магистра, Университет Талсы, Талса, Оклахома.
  33. ↑ Васкес, М. и Беггс, Х.Д. 1980. Корреляции для предсказания физических свойств жидкости. J Pet Technol 32 (6): 968-970. SPE-6719-PA. http://dx.doi.org/10.2118/6719-PA
  34. ↑ Абдул-Маджид, Г.Х., Кларк, К.К. и Салман, Н.Х. 1990. Новая корреляция для оценки вязкости ненасыщенной сырой нефти.J Can Pet Technol 29 (3): 80. PETSOC-90-03-10. http://dx.doi.org/10.2118/90-03-10

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел для предоставления ссылок на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Вязкость газа

Трение жидкости

Плотность масла

Свойства нефтяной жидкости

PEH: Масло_Система_Взаимосвязи

.

Вязкость моторного масла

Убедитесь, что в вашем браузере включен JavaScript. Если вы оставите отключенным JavaScript, вы получите доступ только к части предоставляемого нами контента. Вот как.
Области науки Материаловедение
Сложность
Требуемое время Короткая (2-5 дней)
Предварительные требования Нет
Наличие материалов Легко доступны
Стоимость Очень низкий (менее 20 долларов США)
Безопасность Требуется наблюдение взрослых.Соблюдайте осторожность при нагревании масла на водяной бане и при работе с горячими емкостями.

Абстрактные

При работающем двигателе внутренние части автомобильного двигателя сильно нагреваются. Моторное масло смазывает движущиеся части, чтобы двигатель работал бесперебойно. Что происходит с моторным маслом при повышении температуры двигателя?

Объектив

Цель этого проекта - измерить зависимость вязкости моторного масла от температуры.

Поделитесь своей историей с друзьями по науке!

Да, Я сделал этот проект! Пожалуйста, войдите в систему (или создайте бесплатную учетную запись), чтобы сообщить нам, как все прошло.

Планируете ли вы сделать проект от Science Buddies?

Вернитесь и расскажите нам о своем проекте, используя ссылку «Я сделал этот проект» для выбранного вами проекта.

Вы найдете ссылку «Я сделал этот проект» на каждом проекте на веб-сайте Science Buddies, так что не забудьте поделиться своей историей!

Кредиты

Эндрю Олсон, Ph.D., Друзья науки

Источники

Этот проект основан на:

Цитируйте эту страницу

Здесь представлена ​​общая информация о цитировании. Обязательно проверьте форматирование, включая использование заглавных букв, для метода, который вы используете, и обновите цитату по мере необходимости.

MLA Стиль

Сотрудники Science Buddies. «Вязкость моторного масла». Друзья науки , 8 июля 2020, https://www.sciencebuddies.org/science-fair-projects/project-ideas/MatlSci_p019/materials-science/visacity-of-motor-oil.Проверено 2 октября 2020 г.

Стиль APA

Сотрудники Science Buddies. (2020, 8 июля). Вязкость моторного масла. Полученное из https://www.sciencebuddies.org/science-fair-projects/project-ideas/MatlSci_p019/materials-science/visacity-of-motor-oil

Дата последнего редактирования: 2020-07-08

Введение

Двигатель внутреннего сгорания, которым оснащается автомобиль вашей семьи, имеет движущиеся части, которые работают при высоких температурах в течение миллиардов циклов на протяжении всего срока службы.Для обеспечения плавного движения поршней в цилиндрах между поршневыми кольцами и стенкой цилиндра имеется тонкая пленка моторного масла. Масло представляет собой смазку - скользкую жидкость, которая позволяет поршню свободно скользить внутри цилиндра. Без масла поршень не сможет двигаться в цилиндре - двигатель заклинивает и выходит из строя.

Основные функции моторного масла:

  • Смажьте движущиеся части двигателя, чтобы уменьшить трение и предотвратить износ.
  • Очистить двигатель от загрязнений.
  • Уплотнение поршня и гильзы для оптимального КПД двигателя.
  • Устойчивость к высокотемпературной деградации.
  • Способствует низкотемпературной смазке.
  • Смазывайте в широком диапазоне температур »(Thibault, 2001).

Масло должно обеспечивать плавное движение поршня при низких температурах (при первом запуске двигателя), а также при обычно высокой рабочей температуре цилиндров.

Один из способов измерения способности масла к смазке - это определение его вязкости . Вязкость жидкости является мерой сопротивления жидкости потоку. Вы можете думать об этом как о жидкостном трении. Вода - это пример жидкости с низкой вязкостью - она ​​легко и быстро разливается. Кулинарное масло имеет более высокую вязкость - оно течет медленнее, чем вода. Для моторного масла важно, чтобы вязкость существенно не изменялась при повышении температуры.

Вязкость жидкостей можно измерить с помощью специальной посуды, называемой вискозиметром (см. Рисунок 1).Жидкость всасывается из чашки слева внизу в трубку справа с помощью присоски. Отсос снимается, и измеряется время, необходимое для стекания жидкости. Чем выше вязкость, тем дольше жидкость будет стекать через трубку. Для измерения вязкости при разных температурах вискозиметр помещают в водяную баню. Поскольку вискозиметры дороги (более 170 долларов США), вы будете использовать немного другую технику для этого эксперимента.


Рисунок 1. Вискозиметр Оствальда для измерения вязкости жидкостей.

Вместо причудливой стеклянной посуды можно использовать стакан из пирекса или градуированный цилиндр. Вы выпускаете сферу (стеклянный мраморный или стальной шарикоподшипник) на поверхность жидкости и измеряете время, за которое сфера упадет на дно стакана или цилиндра. Вы можете провести сравнение, используя измеренное время падения шара, или вы можете пойти дальше в своем проекте и фактически рассчитать вязкость.Тебе решать.

Чтобы рассчитать вязкость, вам нужно измерить время, за которое сфера упадет, расстояние, на которое сфера упадет, а также плотность сферы и жидкости.

Уравнение (Уравнение 1) показывает, как рассчитать вязкость на основе ваших измерений. Сначала это может показаться устрашающим, потому что в нем есть несколько греческих букв, но пусть это вас не пугает. Переменной, обычно используемой для обозначения вязкости, является греческая буква «эта» ( η ).Переменной, обычно используемой для обозначения плотности, является греческая буква «ро» ( ρ ). Заглавная греческая буква «дельта» (Δ) часто используется как сокращение для обозначения разницы чего-либо. Другие переменные в уравнении: g, , для ускорения силы тяжести (980 см / с, 2 ), a для радиуса сферы (в см) и v для средней скорости сфера при падении через жидкость (в см / с). Результат - в единицах пуаз (г / см · с).

Итак, уравнение говорит вам: взять плотность сферы за вычетом плотности жидкости (Δ ρ ), умножить это на 2 ga 2 , а затем разделить результат на 9 v . Если сфера падает быстрее (т.е. с большей скоростью), v больше, а вязкость η меньше, как и следовало ожидать. И наоборот, если сфера падает медленнее, вязкость выше. Вы также можете ожидать, что сфера будет иметь более высокую плотность (т.е.е., имеет меньшую плавучесть) упадет быстрее, чем сфера с меньшей плотностью (то есть более плавучая). Это объясняется коэффициентом плотности в уравнении. Величина трения, которое испытывает сфера при падении, будет связана с площадью ее поверхности, которая пропорциональна квадрату радиуса сферы.

Вы можете использовать водяную баню, чтобы нагреть или охладить масло до разных температур, чтобы увидеть, как его вязкость изменяется с температурой. В разделе «Экспериментальная процедура» есть более подробные инструкции.

Термины и понятия

  • Вязкость
  • Смазка
  • Двигатель внутреннего сгорания

Вопросы

  • Что означают рейтинги SAE для моторного масла?
  • Почему для моторного масла важно сохранять вязкость в широком диапазоне температур?

Библиография

  • Что означают рейтинги SAE для моторного масла? Узнайте из этой статьи:
    Thibault, R., 2001. How To Read the Oil Can, Machinery Lubrication Magazine, May 2001. Получено 2 ноября 2006 г..
  • В этой статье описывается метод измерения вязкости жидкости:
    HSGC, 1996. Вязкость: Teacher Page, Гавайский консорциум космических грантов. Проверено 2 ноября 2006 г..
  • Для получения более подробной информации о вязкости, включая вязкости для нескольких различных жидкостей, см .:
    авторов Википедии, 2006 г. Вязкость, Википедия, The Free Encylcopedia. Проверено 2 ноября 2006 года.
  • Более подробные статьи по физике вязкости см .:
    Transtronics, 2006. Visidity, Transtronics. Проверено 2 ноября 2006 г..
  • Для получения информации о том, как работают двигатели внутреннего сгорания, см .:
    Brain, M., 2006. Как работают автомобильные двигатели, Howstuffworks.com. Проверено 2 ноября 2006 г..

Лента новостей по этой теме

Примечание: Компьютеризированный алгоритм сопоставления предлагает указанные выше статьи.Это не так умно, как вы, и иногда может давать юмористические, смешные или даже раздражающие результаты! Узнать больше о ленте новостей

Материалы и оборудование

  • Различные моторные масла с разной вязкостью, например:
  • Маленькая сфера, например:
    • Шарикоподшипник из стекла, мрамора или стали
  • Граммовая шкала для измерения веса масла и шара, например, карманные цифровые весы от Amazon.com
  • Стакан из пирекса или градуированный цилиндр (внутренний диаметр должен быть больше сферы),
  • Клещи (для извлечения шара из нагретого масла)
  • Термометр (от 0 до 100 ° C)
  • Секундомер
  • Сковорода большая
  • Электрическая плита или электрическая плита
  • Вода
  • Лед

Заявление об отказе от ответственности: Science Buddies участвует в партнерских программах с Инструменты для дома, Amazon.com, Каролина Биологический и Jameco Electronics. Доходы от партнерских программ помогают поддерживать Science Buddies, общественной благотворительной организации 501 (c) (3), и делаем наши ресурсы бесплатными для всех. Наш главный приоритет - обучение студентов. Если у вас есть какие-либо комментарии (положительные или отрицательные), связанные с покупками, которые вы сделали для научных проектов по рекомендациям на нашем сайте, сообщите нам об этом. Напишите нам на [email protected]

Методика эксперимента

  1. Примечание по безопасности: Для нагрева водяной бани в этом эксперименте используйте горячую плиту или электрическую плиту, а никогда - открытое пламя.Моторное масло горючее. Не используйте , а не , используйте его возле открытого огня. Также по завершении эксперимента не забудьте правильно утилизировать отработанное моторное масло.
  2. Затем вам нужно измерить время, за которое сфера проходит сквозь масло.
    1. Залейте масло в стакан из пирекса (или мерный цилиндр).
    2. Измерьте высоту масла (в см).
    3. Удерживайте сферу (мраморный или шариковый подшипник) на поверхности масла.
    4. Отпустите сферу и одновременно включите секундомер.
    5. Остановите секундомер в момент, когда сфера коснется дна стакана (или градуированного цилиндра).
  3. Повторите измерение несколько (не менее 3) раз. Снимите сферу щипцами и дайте маслу стечь. Вытрите шар бумажным полотенцем. Убедитесь, что высота масла не изменилась.
  4. Охладите масло, поместив стакан (или мерный цилиндр) в ледяную баню.Время от времени помешивайте масло, чтобы обеспечить равномерную температуру. Проверяйте температуру масла каждые десять минут или около того. Когда температура масла больше не меняется, запишите температуру масла и повторите измерение скорости, как прежде.
  5. Нагрейте масло, поместив стакан в кастрюлю с водой на горячей плите или электрической плите. Используйте средний огонь. Вы не хотите, чтобы или сильно закипели на водяной бане. Время от времени помешивайте масло, чтобы обеспечить равномерную температуру. Проверяйте температуру масла каждые десять минут или около того.Когда температура перестанет меняться, запишите температуру масла и повторите измерение скорости, как прежде.
  6. Рассчитайте среднее время падения для каждой температуры. Для визуального сравнения результатов вы можете построить гистограмму времени падения (в секундах по оси Y) в зависимости от температуры масла (в ° C по оси X). Или вы можете продолжить расчет фактической вязкости масла при каждой температуре, выполнив оставшиеся шаги.
  7. Измерьте плотность шара.Плотность - это вес единицы объема в г / см 3 . Сначала измерьте вес шара в граммах. Чтобы измерить объем сферы, измерьте, сколько воды вытесняет сфера в градуированном цилиндре.
    1. Частично наполните мерный цилиндр водой и отметьте уровень воды (в мл, что эквивалентно 3 в см). Всегда измеряйте уровень воды от нижней части мениска (изогнутая поверхность воды внутри цилиндра).
    2. Наклоните градуированный цилиндр в сторону и осторожно вкатайте сферу в цилиндр.
    3. Запишите новый уровень воды и вычтите исходный уровень воды. Разница в объеме шара (в см 3 ).
  8. Чтобы измерить плотность масла, сначала измерьте вес пустого градуированного цилиндра. Затем залейте масло в цилиндр и взвесьте цилиндр и масло вместе. Вычтите вес пустого цилиндра, чтобы получить вес масла. Считайте объем масла на градуированном цилиндре. Плотность - это вес, деленный на объем.Меняется ли плотность масла в зависимости от температуры? Измерь и узнай. Будьте очень осторожны при заливке нагретого масла! Для максимальной точности мерный цилиндр должен иметь ту же температуру, что и масло.
  9. Рассчитайте среднюю скорость шара при каждой температуре. Скорость - это расстояние, на которое сфера упала (в см), деленное на среднее время падения (в с).
  10. Используйте уравнение 1, чтобы рассчитать вязкость масла при каждой температуре.
    1. Δ ρ = плотность сферы - плотность масла (в г / см 3 ),
    2. g = ускорение свободного падения (980 см / с 2 ),
    3. a = радиус сферы (в см),
    4. v = средняя скорость падающей сферы (в см / с).
  11. Как вязкость меняется с температурой?

.

Если вам нравится этот проект, возможно, вам понравятся следующие родственные профессии:

Ученый и инженер-материаловед

Что позволяет создавать высокотехнологичные объекты, такие как компьютеры и спортивное снаряжение? Это материалов, внутри этих продуктов.Материаловеды и инженеры разрабатывают материалы, такие как металлы, керамика, полимеры и композиты, которые нужны другим инженерам для их проектов. Материаловеды и инженеры мыслят атомарно (то есть они понимают вещи на наномасштабном уровне), но они проектируют микроскопически (на уровне микроскопа), а их материалы используются макроскопически (на уровне, который может видеть глаз. ). От теплозащитных экранов в космосе, протезов конечностей, полупроводников и солнцезащитных кремов до сноубордов, гоночных автомобилей, жестких дисков и форм для выпечки - материаловеды и инженеры создают материалы, которые делают жизнь лучше.Подробнее

Химик

Все в окружающей среде, будь то естественное происхождение или созданное человеком, состоит из химикатов. Химики ищут и используют новые знания о химических веществах для разработки новых процессов или продуктов. Подробнее

Автомобильный инженер

Автомобили - важная часть нашей повседневной жизни.Мы зависим от них в выполнении повседневных задач - добираться до школы и на работу, заниматься спортом, покупать продукты и выполнять различные поручения - а также обеспечивать нашу безопасность при этом. Наши машины согревают или согревают нас, пока мы едем на них, и они даже помогают нам ориентироваться. Автомобиль состоит из сложных тормозных систем, рулевого управления и электрических систем, а также двигателя и трансмиссии. Все эти системы требуют огромного количества инженерных работ, ответственность за которые лежит на автомобильных инженерах.Они разрабатывают компоненты и системы, которые делают наши автомобили эффективными и безопасными. Подробнее

Варианты

  • Получаете ли вы одинаковую конечную вязкость, если используете сферы разной плотности (например, стеклянный мрамор или стальной шарикоподшипник)?
  • Имеет ли вязкость различных моторных масел одинаковая температурная зависимость? Другими словами, если вы построите графики зависимости вязкости оттемпература для разных моторных масел, у всех ли они одинаковы?
  • Измерение вязкости различных кулинарных масел при разных температурах. Сохраняют ли кулинарные масла вязкость при повышенных температурах? Как они сравниваются с моторным маслом в этом отношении? Почему?
  • Меняется ли вязкость моторного масла после его использования? Измерьте вязкость использованного моторного масла из семейного автомобиля по сравнению с новым моторным маслом.

Поделитесь своей историей с друзьями по науке!

Да, Я сделал этот проект! Пожалуйста, войдите в систему (или создайте бесплатную учетную запись), чтобы сообщить нам, как все прошло.

Спросите эксперта

Форум «Задайте вопрос эксперту» предназначен для того, чтобы студенты могли найти ответы на научные вопросы, которые они не смогли найти с помощью других ресурсов. Если у вас есть конкретные вопросы о вашем проекте или научной ярмарке, наша команда ученых-добровольцев может вам помочь. Наши специалисты не будут выполнять эту работу за вас, но они сделают предложения, дадут рекомендации и помогут устранить неполадки.

Спросите эксперта

Ссылки по теме

Лента новостей по этой теме

Примечание: Компьютеризированный алгоритм сопоставления предлагает указанные выше статьи.Это не так умно, как вы, и иногда может давать юмористические, смешные или даже раздражающие результаты! Узнать больше о ленте новостей

Ищете больше научных развлечений?

Попробуйте одно из наших научных занятий для быстрых научных исследований в любое время. Идеально, чтобы оживить дождливый день, школьные каникулы или момент скуки.

Найдите занятие

Видео о нашей науке

Как собрать Brushbot

Make Fake Snow - Craft Your Science Project

Как приготовить зубную пасту для слона

Спасибо за ваш отзыв!

.

Выбор подходящего типа моторного масла

Часто производитель предлагает две или более вязкости моторного масла для двигателя, например, 5W-20 или 5W-30, в зависимости от нескольких различных факторов, включая температуру. Причина этого в том, что двигателям часто требуется разная вязкость в зависимости от условий эксплуатации. Знание того, как ученые видят вязкость, поможет владельцу определить лучшее масло для двигателя.

Вязкость , по сути, представляет собой сопротивление жидкости течению.В мире моторных масел вязкость обозначается обычным «XW-XX». Число перед буквой «W» обозначает поток масла при 0 градусах Фаренгейта (-17,8 градуса Цельсия). Буква «W» означает зиму, а не вес, как многие думают. Чем здесь цифра ниже, тем меньше загустевает на морозе. Таким образом, моторное масло с вязкостью 5W-30 густеет на морозе меньше, чем 10W-30, но больше, чем 0W-30. Двигатель в более холодном климате, где моторное масло имеет тенденцию загустевать из-за более низких температур, выиграет от вязкости 0W или 5W.Машине в Долине Смерти потребуется большее количество, чтобы масло не разжижалось слишком сильно.

Объявление

Вторая цифра после буквы «W» обозначает вязкость масла, измеренную при 212 градусах Фаренгейта (100 градусов Цельсия). Это число показывает устойчивость масла к разбавлению при высоких температурах. Например, масло 10W-30 разжижается при более высоких температурах быстрее, чем масло 10W-40.

В руководстве пользователя будет указан наилучший диапазон вязкости, после чего владелец сможет работать с этими параметрами.

Помня о правильной вязкости, пора начинать делать покупки для определенного типа масла. Большинство пассажиров следуют правилу 3 месяца и 3 000 миль (4828 км). Частая замена масла означает, что потребность в других типах масла меньше, чем в обычном. Однако некоторые автомобильные компании, такие как Mercedes-Benz и BMW, рекомендуют для своих автомобилей только синтетическое масло. Следующий список, а также руководство по эксплуатации автомобиля дадут хорошее представление о том, какой тип масла использовать. Также хорошее практическое правило - не переключаться между типами.Если ваша машина началась с обычного, придерживайтесь этого. Если вначале использовался синтетический, опасайтесь переходить на обычный.

  • Обычное масло: Это масло, используемое оптом в дилерских центрах, а также самое дешевое в автомагазинах. Большинство из них придерживаются стандартов API и SAE, но мало предлагают пакеты присадок. Это хорошее масло для владельцев, которые религиозно относятся к частой замене масла и имеют двигатели с малым пробегом (но хорошо обкатанные).
  • Стандартное масло премиум-класса: Это стандартное масло для новых автомобилей.У большинства ведущих брендов есть сервис SL или высший уровень обслуживания. Большинство из них имеют обычную вязкость. Производители автомобилей обычно рекомендуют масло 5W-20 или 5W-30, хотя некоторым требуется масло 10W-30. Эти три рейтинга охватывают практически все легковые автомобили на дорогах, хотя ситуация меняется по мере того, как двигатели становятся более точными и требовательными к маслам определенных типов.
  • Полностью синтетическое масло: Эти масла предназначены для высокотехнологичных двигателей. Если эти масла проходят строгие специальные испытания (обозначенные их маркировкой), это означает, что они обладают превосходными и долговечными характеристиками во всех критических областях, от индекса вязкости до защиты от отложений в двигателе.Они лучше текут при низких температурах и сохраняют максимальную смазку при высоких температурах. Хотя синтетическое масло превосходное, оно примерно в три раза дороже обычного масла и не всегда необходимо для большинства двигателей. Используйте руководство пользователя в качестве руководства. Если для этого не требуется синтетическое масло, его использование будет лишь дополнительными расходами, которые не могут ничего добавить к производительности или сроку службы двигателя.
  • Смесь синтетических масел: По сути, это обычное масло премиум-класса с добавлением синтетики.Они разработаны для обеспечения лучшей защиты при более высоких нагрузках на двигатель и связанных с этим более высоких температурах двигателя. Эти масла популярны среди водителей пикапов и внедорожников, потому что они обеспечивают лучшую защиту, но обычно стоят лишь на часть дороже, чем обычные масла премиум-класса.
  • Масло с большим пробегом: Более 60 процентов транспортных средств на дорогах имеют на одометре более 75 000 миль (120 701 км). Играя на этом растущем рынке, нефтепереработчики и лаборатории разработали масла с большим пробегом.В масло добавляются кондиционеры для уплотнений (масло может быть синтетическим или обычным) для расширения и повышения гибкости внутренних уплотнений двигателя. Кондиционеры очень точны и могут принести пользу одним двигателям, не влияя на другие.

Некоторые компании также добавляют модификаторы вязкости для загущения масла, а также противоизносные присадки. Мы обсудим это на следующей странице.

.

7 малоизвестных фактов о замене масла в насосе мойки высокого давления

PressureWashr поддерживает считыватели. Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию.

Вам вообще нужно заменить масло в насосе мойки высокого давления?

95% установок для мытья под давлением стоимостью менее 400 долларов имеют насос, который вы никогда не обслуживаете.

Если он сломается - просто замените - обычно на него распространяется гарантия.

Эти качающиеся и аксиально-поршневые насосы для бытового использования заполняются маслом на заводе и герметично закрываются перед отправкой.Нет возможности легко поменять масло, даже если бы вы захотели.

Итак, как узнать, требуется ли замена масла в водяном насосе омывателя?

Два пути:

  1. Вы можете найти информацию в вашем Руководстве пользователя. Если насос требует замены масла, ваше руководство скажет вам.
  2. Будет возможность поменять масло без разрыва насоса - насос в сборе будет иметь сливную и заливную пробку / болт.

Но раз уж вы здесь: я полагаю, вы уже знаете масло в водяном насосе мойки высокого давления нужно заменить…

… Вы попали в нужное место, потому что в этом подробном руководстве есть все, что вам нужно знать, чтобы заменить масло в насосе (сегодня), даже если вы никогда не делали этого раньше.

7 малоизвестных фактов о замене масла в насосе мойки высокого давления

Все, что вам нужно знать о масле для насоса и его замене, разбито на 7 разделов ниже.

Вы можете перейти к каждому разделу здесь:

  1. Зачем насосу масло
  2. Насосное масло по сравнению с моторным маслом
  3. Марки и типы насосного масла
  4. Как узнать, когда заменить
  5. Необходимые инструменты и оборудование
  6. Шаги по его замене
  7. Где избавиться от старых вещей

1.Зачем насосу масло.

Насосу требуется масло для смазки его внутренних поверхностей, чтобы уменьшить трение, износ и нагрев деталей при их движении. Цель состоит в том, чтобы предотвратить преждевременный отказ.

Тип смазки так же важен для системы, как и тип материала или тип подшипника.

Масло имеет решающее значение для производительности насоса:

Знаете ли вы, что смазочное масло - это одна из девяти опор конструкции механического элемента?

Остальные 8:

  1. Крепежные изделия
  2. Швы неразъемные
  3. Пружины
  4. Контактные / опорные подшипники качения
  5. Прямые / косозубые / конические / червячные передачи
  6. Сцепления / тормоза / маховики
  7. Ремни / цепи / тросы
  8. Валы / оси

Знание, какой тип смазочного масла использовать в механической системе, - это солидные 2 недели лекций на 3-м курсе инженерных классов (и это только введение).Столько же времени уходит на конструкцию шестерен, осей и сварки.

Итак, по каким причинам вам следует заботиться о насосном масле?

Эти 3 причины:

Для увеличения срока службы компонентов

Действует как смазка для движущихся частей, уменьшая трение между ними. Это снижает тепло. Избыточное тепло является проблемой, потому что оно расширяет уплотнения, что может привести к их растрескиванию.

Гарантийные требования

Проверьте свое руководство пользователя, чтобы узнать, аннулируется ли ваша гарантия, если вы не выполните регулярное обслуживание.Загрязненное неизмененное масло несложно увидеть при сдаче его в гарантийный ремонт.

Стоимость восстановления насоса после отказа - дорого (если возможно)
  • Осевые насосы мойки высокого давления - Возможно, не стоит ремонтировать в зависимости от неисправности. Если все, что пошло не так, - это грязный разгрузочный клапан, вы можете разобрать насос и очистить или заменить его. Этот ремонт не проблема. Если у вас есть трещины или повреждения уплотнений или уплотнительных колец, у вас есть доступный ремонт.Но если вам нужно начать замену поршней или наклонной шайбы, лучше просто заменить весь насос.
  • Триплексные водяные насосы - Почти всегда стоит отремонтировать, так как новый (хороший) тройной насос может стоить более 500 долларов, а отдельные компоненты, которые могут выйти из строя, легко доступны и заменяются.

2. Разница между маслом, используемым в насосах и двигателях.

Отличие заключается в добавлении присадок для придания маслу определенных свойств. Общая разница в присадках между насосом и обычным моторным маслом будет:

  • Сульфонат магния применяется как моющая присадка к моторному маслу.
  • Силиконовые компаунды, такие как PDMS , используются в качестве противопенного агента для насосного масла.

Давайте выясним причину этих различий.

Не моющее масло для насоса и моющее масло для малых двигателей

В современном двигателе используется масло с моющим средством, поскольку в нем есть масляный фильтр. Масло с моющим средством очищает загрязнения с поверхностей двигателя, а масляный фильтр фильтрует их, чтобы не допустить попадания загрязнений в подшипники. Использование масла с моющим средством без масляного фильтра будет означать, что загрязнения будут накапливаться, и масло быстро пачкается ... И вам нужно будет часто менять масло, чтобы предотвратить чрезмерный износ и возможные поломки.

Насос не имеет масляного фильтра. Вот почему в насосах для очистки под давлением рекомендуется использовать масло без моющих присадок. Если вы используете масло с моющим средством в насосе, все загрязнения, которые он очищает с поверхностей, будут проходить через масло. Это увеличивает риск износа внутри насоса.

Противовспенивающие и противоаэрационные присадки

Контроль воздуха в масле осуществляется с помощью присадок, препятствующих пенообразованию и аэрации. Из двух более важна антиаэрация.

Все насос и масляная система насоса будут содержать воздух - проблема с воздухом в масле может быть в следующем:

  • Аэрация: вызывает образование пузырьков воздуха, которые могут привести к кавитации насоса (нежелательное дребезжание / вибрация движущихся частей насоса) и потере вязкости масла (неправильная смазка из-за слишком большого количества воздуха).
  • Вспенивание : обычно не большая проблема ... Но поскольку пена находится в верхней части поверхности масла, она может вспениваться, вызывая дополнительное давление / утечки масла, и почему бы просто не уменьшить пену с помощью простой добавки?

3.Все типы насосного масла, его маркировка, марки, которые использует большинство людей, и лучшее насосное масло для покупки.

Для смазки водяного насоса используется моторное масло. В него будут добавлены дополнительные присадки, и есть простые способы определить, какое масло можно использовать для насосов (даже если они не помечены как насосное масло).

Он будет иметь обозначение «ND»:

ND означает не моющее средство.

Проверьте лучшее насосное масло на Amazon здесь…

Прямо на нем будет написано «не моющее средство»:

Проверьте лучшее насосное масло на Amazon здесь…

Там будет сказано насосное масло:

Есть много брендов на выбор:

  • Ми-Т-М
  • CAT Насосы
  • Бриггс и Страттон
  • BE
  • Симпсон

Проверьте лучшее насосное масло на Amazon здесь…

Для классических автомобилей или двигателей ранних моделей (1920-е годы) он будет обозначен:

.

Классические автомобили, построенные в начале 1900-х годов, не имели масляных фильтров (масляные фильтры были изобретены в 1923 году), поэтому в них использовалось моторное масло с низким содержанием моющих присадок или без них.Это идеальный тип масла для насосов. Однако сегодня компании-производители смазочных материалов могут назначать премиум-класса, назначая его для классических автомобилей - это часто намного дороже, чем указанные выше варианты масла без моющих присадок.

Проверьте лучшее насосное масло на Amazon здесь…

Что означают все обозначения - SAE 30, 15W 40?

Когда масло нагревается, оно становится тоньше - легче течет.

Вот аналогия:

Подумайте о масле.

Когда масло комнатной температуры, оно едва стекает на хлеб. Затем вы его нагреваете, и он легко течет.

Это свойство называется вязкостью - это сопротивление жидкости течению.

  • Высокая вязкость - это высокое сопротивление течению, как у патоки в январе, арахисового масла, кетчупа, сиропа, расплавленного стекла или сала.
  • Низкая вязкость означает, что жидкость течет легко, как вода.

SAE 10 имеет меньшую вязкость (легче течет), чем SAE 40 при той же температуре.

Если масло имеет обозначение 15W 40, это мультивязкое масло. 15W означает, что оно работает как масло SAE15 при низких температурах (зимой). И работает так, как будто это SAE 40 при более высоких / рабочих температурах.

Если вы живете во Флориде, вам, вероятно, не понадобится мультивязкое масло, потому что оно недостаточно остывает.

4. Как узнать, когда ваш насос мойки высокого давления нуждается в замене масла (если когда-либо).

Большинство бытовых насосов для мойки высокого давления не требуют обслуживания.Ваше руководство пользователя расскажет вам об этом.

Если в течение гарантийного срока произойдет отказ насоса, они заменят насос вместо его ремонта. Однако многие аппараты для мытья под давлением, представленные на рынке, имеют насосы, которые требуют регулярной замены масла, даже если об этом не говорится в инструкции. Также может потребоваться поиск и устранение неисправностей, если насосу требуется замена масла.

Вот 5 различных водяных насосов омывателя.

Насос на станке Stanley обеспечивает легкий доступ для замены масла в насосе.

Этот электрический насос для мойки высокого давления AR Blue Clean не дает доступа (без полного демонтажа насоса).

Этот насос имеет простой доступ, несмотря на то, что в руководстве сказано, что замена масла никогда не требуется.

К этому насосу мойки высокого давления нет доступа, и в руководстве указано, что насос не требует обслуживания.

Несмотря на то, что этот очиститель высокого давления Briggs and Stratton имеет насос с доступом к масляному резервуару, в руководстве говорится, что гарантия будет недействительна, если на насосе будет проводиться техническое обслуживание.

Допустим, у вас есть насос, в котором можно легко заменить масло…

Как узнать КОГДА менять масло в водяном насосе?

Гарантия на регулярное техническое обслуживание

Во-первых, всегда полезно отслеживать, сколько часов вы использовали на своей машине.

Почему?

Потому что часто в руководстве пользователя указывается замена масла в зависимости от отработанных часов.

Утечка масла

Если вы заметили регулярную утечку масла из насоса, то вы можете быть уверены, что в нем мало масла, и его необходимо отремонтировать или заменить, а также часто добавлять масло, если вы должны использовать его перед ремонтом.

Масло молочного цвета

Чтобы заметить, что масло имеет молочный цвет, вы должны либо заметить утечку, разобрать насос для другого ремонта, либо слить небольшое количество масла для проверки качества. В любой из этих ситуаций можно смело менять масло.

5. Инструменты и оборудование, необходимые для замены масла в водяном насосе (в вашем гараже или сарае) сегодня.

Для замены масла в водяном насосе мойки с усилителем требуется совсем немного инструментов и оборудования:

  • Маслоуловитель - Что-то для улавливания масла на выходе из корпуса насоса.Вы можете использовать алюминиевый поддон для барбекю, как я, или настоящий масляный поддон.
  • Гаечный ключ - Если в насосном агрегате вашей машины есть доступ для болтов, вам понадобится гаечный ключ правильного размера. Многие мойки высокого давления имеют пластиковую ручку для доступа без гаечного ключа.
  • Воронка - Чтобы избежать разлива масла из насоса, используйте воронку для заполнения насоса в сборе маслом.
  • Емкость для хранения масла - Я использую модифицированную 2-литровую бутылку из-под газировки, чтобы хранить масло, пока я не утилизирую его механикам по дороге.Или вы можете использовать воронку и вылить ее обратно в старую бутылку с маслом.

6. Как поменять масло в помпе.

Посмотрите, как я меняю масло водяного насоса на мойке высокого давления Stanley 2500 PSI:

Я купил эту бывшую в употреблении моечную машину несколько месяцев назад ... Святая молли, там было грязное масло для насоса.

8 шагов по замене масла в водяном насосе омывателя с усилителем:

  1. Ослабьте и снимите верхний болт доступа к масляному резервуару насоса, чтобы сбросить давление внутри
  2. Поместите маслосборник под болт слива масла насоса и возьмите гаечный ключ подходящего размера
  3. Ослабьте и снимите сливной болт масляного бачка насоса и дайте маслу вылиться в сборную емкость
  4. Отложите грязную емкость для уловителя масла и установите сливной болт на место
  5. Откройте масло насоса без моющего средства, возьмите воронку (или нет) и залейте масло в насос.
  6. Вы не хотите заполнять резервуар маслом полностью ... Только примерно на 3/4.
  7. Установите наливной болт обратно на насос и затяните.
  8. Очистите территорию и включите мойку высокого давления.

7. Где безопасно слить слитое масло насоса.

Есть два способа избавиться от масла в насосе: переработать или утилизировать. Если вы проведете исследование, вы найдете бесплатные варианты рядом с вами. В некоторых других местах может потребоваться небольшая плата в размере нескольких долларов за литр.

Зачем повторно использовать или перерабатывать отработанное насосное масло?

Насосное или моторное масло можно повторно использовать после очистки / повторной очистки, чтобы его можно было вернуть в ближайший к вам перерабатывающий завод.

Где утилизировать рядом с вами?

Эти места принимают ваше отработанное масло:

  • Местный автомеханик
  • Wal-mart, Home Depot, Costco
  • Jiffy Lube (или аналогичный)
  • Местный центр утилизации

Куда утилизировать старое насосное масло, если вы не можете найти переработчика?

Большинство местных свалок принимают отработанное моторное масло.Обязательно посетите местный сайт свалки или позвоните им, прежде чем ехать туда.

Источники

  1. Описание деталей PDF. www.ARNorthAmerica.com.
  2. Моторное масло
  3. Early Engine Oil - моющее средство против недетергента. www.FillingStation.com.
  4. Приложения PDMS. Wikipedia.org.
  5. Присадки к маслам. Wikipedia.org.
  6. Контроль аэрации масла и пены. www.MachineryLubrication.com.
  7. Управление, повторное использование и переработка отработанного масла. www.EPA.губ.

Об авторе: Джейми тестировал и пересматривал мойки высокого давления в течение 7 лет. Он работал коммерческим аппаратом для мытья под давлением на заводе по переработке материалов в течение 3 лет, и все это время он использовал аппараты для мытья под давлением в коммерческих и бытовых целях более 15 лет. Он также является инженером-механиком и, работая в горнодобывающей промышленности, разработал под ключ несколько подушек для мытья легких промышленных транспортных средств.

.

Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)
Загрузка...