Работа дизельного двигателя в разрезе


Отличие дизельного двигателя от бензинового

Автолюбители, выбирая себе машину, смотрят в первую очередь на возможности двигателя и его характеристики. Часто возникают сомнения при выборе между бензиновым и дизельным мотором. Нельзя сказать точно какой из них лучше, потому как между ними существуют отличия, и делать выбор надо, ориентируясь на них. Успешность выбора будет зависеть от их слабых и сильных сторон. С чем можно смириться, а что неприемлемо для условий дорог, по которым они будут ездить. Мы же постараемся рассказать обо всех нюансах этих двух устройств.

Отличия при работе устройств

По конструкции оба двигателя идентичны. Каждый из них имеет шатуны, цилиндры и поршни. Но для того чтобы дизельный мотор воспринимал серьезные нагрузки на нем стоят усиленные клапаны, поэтому он имеет большие габариты, а также весит тяжелее бензинового аналога. Его устройство намного сложнее, а это отражается на стоимости автомобиля.

Главное отличие дизельного двигателя от бензинового — их топливо. Один работает на дизтопливе, а другой на бензине, что и заложено в их названиях. При этом стоит учесть, что бензин относится к легко возгораемым веществам. Мотор на дизтопливе более безопасен.

Такты в дизельном двигателе

Формирование топливно-воздушной смеси у них происходит по-разному. Что влияет на работу моторов. В дизельном двигателе сначала в цилиндр подается воздух. Он нагревается при движении поршня вверх, температура может достигать 900 градусов за счет уменьшения объема воздуха и увеличения его давления, достигающего порой 5 МПа. Затем уже через форсунки поступает топливо под давлением, которое тут же возгорается от горячего воздуха. Оно, расширяясь, вызывает резкое нарастание давления в цилиндре, поэтому дизель отличается высокой шумностью работы.

Регулировку момента впрыска и количества топлива производит топливный насос высокого давления (ТНВД) — главный узел дизельного мотора. Из-за впрыска высокого давления дизель нетребователен к летучести горючего, поэтому ездит даже на низкосортных маслах. Мощность агрегата регулируется подачей топлива и из-за этого даже на низких оборотах давление не падает. Автомобиль с таким двигателем может набрать большую мощность уже при 2000 оборотов, а бензиновый аппарат не так скор.

В бензиновом двигателе топливная смесь образуется прямо во впускной системе и ее воспламенение в цилиндре происходит от искры свечей зажигания. Регулировка мощности осуществляется при помощи потока воздуха, который дозируется дроссельной заслонкой. Старт автомобиля с таким двигателем менее мощный, так как его топливный насос не может дать такого высокого давления, как у дизельного собрата.

Мощность и производительность двигателя

Дизельный агрегат выигрывает у бензинового по экономичности. Хотя сейчас и подняли стоимость дизтоплива, все же она стоит дешевле бензина. И еще надо учесть, что дизельные двигатели меньше потребляют топлива, чем их бензиновые аналоги. Сейчас на всех европейских дизельных авто установлена топливная система Common Rail. Она предусматривает установку датчиков, которые передают информацию на блок управления и на основе ее компьютер определяет время подачи топлива и его количество. Примечательно, что доза рассчитывается с точностью до миллиграмма. Такое дозирование обеспечивает плавное нарастание давления, и двигатель работает без рывков при переключении передач. С этой системой расход топлива уменьшился на 20%, а крутящий момент на малых оборотах увеличился на 25%. Поэтому у дизельных агрегатов КПД больше на 40%, чем у аналоговых аппаратов. То есть сгорание топлива внутри их устройств более эффективно по сравнению с бензиновыми моделями. Хотя существуют и экономные агрегаты на бензине.

Мощность больше, конечно же, у бензиновых двигателей, но дизельные установки компенсируют этот показатель ровной тягой на любых оборотах, до чего их аналогам надо еще стремиться.

Производимый шум и выхлопы

Дизельные агрегаты более шумные, их работа сопровождается вибрацией. А все из-за того, что давление в камере сгорания очень высокое. Но это не так ощутимо в салоне авто, если в нем предусмотрена хорошая звукоизоляция. На холостом ходу звук двигателя напоминает урчание и поэтому не раздражает слух.

В европейских странах популярность дизельных двигателей постоянно растет. Это объясняется не только экономичным расходом топлива, но и их экологичностью. В их выхлопах меньше угарного газа, чем в агрегатах на бензине.

Эксплуатационные особенности

Дизельные двигатели более долговечны, они отличаются своей надежностью от бензиновых собратьев. Это объясняется конструкцией блока цилиндров и продуманностью топливной системы. Их детали, такие как коленчатый вал, головка, цилиндры, форсунки выполнены из прочных материалов, которые исключают быстрый износ. А также от выхода из строя их спасает дизтопливо, которое выполняется две функции: служит горючим и смазкой. Но здесь, надо учесть, что на это будет влиять ее качество, а, как известно отечественное дизтопливо включает в себе различные примеси. Они могут стать причиной сокращения жизнедеятельности дизельного мотора, хотя его показатель даже при этом нюансе будет выше, чем у бензиновых аналогов. Последние реагируют на качество топлива менее чувствительно, поэтому выдерживают примеси и другие включения, которые встречаются в бензине низкого качества.

Дизельные двигатели плохо реагируют на низкие температуры, для их нормальной работы надо предусмотреть специальные зимнее топливо или установить современные системы отопления. Также в большинстве дизельных двигателей устанавливаются свечи накаливания для облегчения пуска мотора в холодное время, ведь дизтопливо неохотно испаряется при невысоких температурах воздуха. Они представляют собой обычный нагревательный резистор. В основном свечи устанавливаются в цилиндры двигателя, после поворота ключа в замке зажигании они включаются и в момент поступления топлива в камеру сгорания нагревают его до температуры при которой оно начинает испаряться. После запуска двигателя свечи работают до нескольких минут для уменьшения вредных выбросов и стабилизации процесса горения на холодном двигателе.

Еще одним вариантом может быть присадка – антигель. Ее заливают в топливо при каждой заправке, и она не дает ему сворачиваться. Бензиновые двигатели в этом не нуждаются. Зато дизельные моторы совершенно не реагируют на воду. Электричество в них используется только для запуска мотора. Поэтому их часто устанавливают на военную технику и внедорожники.

Обслуживание дизельного и бензинового мотора

На частоту ремонта и осмотров влияет много нюансов: условия эксплуатации автомобиля, климат, качество топлива, состояние автомобиля и материал деталей. Ремонт дизельного агрегата более трудоемкий, так как в его конструкции есть свои особенности. Наиболее дорогой его деталью является ТНВД. Но так как ремонт дизельного двигателя происходит гораздо реже, чем бензинового, то это не сильно ударит по карману. В случае использования последнего потребуется постоянно производить смазку его деталей, чтобы они не изнашивались.

Достоинства и недостатки двигателей на бензине и на дизтопливе

Вначале рассмотрим отрицательные стороны каждого из указанных моторов. Они не такие уж критичные, но при рассмотрении характеристик двигателей их надо учесть.

Недостатки дизельного мотора:

  • чувствительность к качеству топлива;
  • малое число сервисов техобслуживания дизельных двигателей. Но это скорее не его недостаток, а отсутствие специалистов по его ремонту в стране;
  • как следствие высокая стоимость ремонтных работ;
  • в зимнее время, если не придерживаться рекомендаций по эксплуатации может быть затруднен запуск двигателя и его работа. Но качественное топливо сможет обеспечить работу двигателя и при –55 0С;
  • не всегда выдерживает большую скорость и высокие обороты;
  • повышенный шум и вибрация;
  • большие габариты двигателя;
  • небольшая мощность;
  • он имеет малые пределы рабочих оборотов (максимальная величина — 4500), тогда как у бензинового мотора средние показатели от 3000 и до 7000.

Недостатки бензинового мотора:

  • вредные выхлопы угарного газа;
  • менее долговечен по сравнению с дизельным аналогом;
  • большой расход топлива;
  • его топливо – взрывоопасное вещество;
  • поломки его деталей более частые.

Теперь перейдем к положительным сторонам, каждого из них. Достоинства продемонстрируют, что может предоставить выбранный агрегат, какие функции он выполняет на отлично.

Преимущества дизельного двигателя:

  • экологичность, в его выхлопах меньше угарного газа;
  • дизтопливо безопаснее, чем бензин;
  • действенней на бездорожьях;
  • имеет большие тяговые усилия на низких оборотах;
  • меньший расход топлива;
  • высокий КПД;
  • отсутствует система зажигания;
  • не боится грязи и воды;
  • его горючее используется не только как топливо, но и исполняет роль смазочного материала;
  • меньшая стоимость дизтоплива.

Преимущества бензинового мотора:

  • простота изготовления и ремонта;
  • бесшумность работы;
  • большая мощность;
  • высокая устойчивость к некачественному топливу;
  • хорошо реагирует на низкие температуры;
  • запчасти имеют доступную стоимость.

Рассмотрев особенности конструкции, эксплуатации, обслуживания, мощность и производительность можно сделать заключение, что каждый из этих двух двигателей по-своему хорош. Приобретая более дорогой автомобиль с дизельным двигателем, можно в дальнейшем сэкономить на дизтопливе. При правильном использовании он более долговечен и как следствие надежен.

Глядя вперед на перспективу, то будущее однозначно за экологическими автомобилями, а, значит, спрос на дизельные двигатели будет постоянно расти. Бензиновый же более мощный и простой. Проблем в обслуживании и ремонте не возникнет, да и запчасти на него более дешёвые. Каждый выбирает, что ему предпочтительней самостоятельно. Можно принимать советы, но окончательное решение за вами.

устройство, принцип работы и классификация


Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).


Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 - 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    - выпускной коллектор (приёмник отработанных газов),
    - газоотвод (приёмная труба, в народе- «штаны»),
    - резонатор для разделения выхлопных газов и уменьшения их скорости,
    - катализатор (очиститель) выхлопных газов,
    - глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.


Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС. 

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения "Базовое устройство двигателя внутреннего сгорания автомобиля", на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива - тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.


Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.


Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй - опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).


Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.


А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.


Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.


Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo" P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Дизельный двигатель | это... Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF - фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Как работает двигатель внутреннего сгорания — Mafin Media

Готовиться смесь может по-разному. В устаревших карбюраторных двигателях горючее «готовится» в отдельном механизме авто — карбюраторе. После смешивания воздуха с топливом смесь подается в двигатель и там сгорает. У карбюраторных моторов много минусов, а их ремонтопригодность сегодня уже не так востребованна. Поэтому самые популярные системы подачи топлива — инжекторные (от англ. inject — впрыскивать). 

В зависимости от конструкции мотора топливо подается либо во впускной коллектор — трубопровод, через который авто получает воздух из окружающей среды, — либо напрямую в цилиндры. Подобные решения сложнее, но позволяют экономить топливо и снижать количество вредных выбросов в атмосферу. Основная деталь инжекторного впрыска — форсунка. Именно она впрыскивает топливо:

Компоненты двигателя: где и как сгорает смесь

Самое важное происходит в корпусе двигателя, который объединяет блок цилиндров (слева на фото) и головку блока цилиндров (справа на фото).

Блок цилиндров содержит полые внутри цилиндрические трубки, в которых размещаются поршни.

Головка блока цилиндров (ГБЦ) монтируется на блок цилиндров и образует герметичные (т. е. непроницаемые для посторонних жидкостей и газов) камеры сгорания.

Внутри камеры сгорания устанавливаются поршни — детали цилиндрической формы, совершающие возвратно-поступательные движения под действием сгорания смеси.

Поршни — часть кривошипно-шатунного механизма (КВШ), комплекса деталей, который преобразует движения поршня во вращение коленчатого вала. Последний и двигает колеса автомобиля. Так выглядит КВШ вместе с поршнями двигателя:

 

В головке блока цилиндров находятся упомянутые выше форсунки — вместе со свечами зажигания (в бензиновом моторе) и клапанами. Свечи зажигания производят электрическую искру, предназначенную для воспламенения топливно-воздушной смеси.

 

 

! — Если автомобиль оснащен непосредственным впрыском топлива (в камеру сгорания), форсунки находятся в ГБЦ, а если впрыск распределительный — форсунки установлены во впускном коллекторе вблизи впускных клапанов.

 

Клапаны относятся к механизму газораспределения и внешне напоминают большие гвозди:

Такая форма дана им неслучайно: нижней, выпуклой частью они закрывают и открывают впускные и выпускные отверстия в камере сгорания, поочередно впуская подготовленную топливно-воздушную смесь или воздух и выпуская отработанные газы. Соответственно, в зависимости от своей роли клапаны бывают впускными и выпускными.

Обычно на один цилиндр приходится от двух до четырех клапанов. За то, чтобы «доступ» в камеру сгорания открывался вовремя, и отвечает механизм газораспределения (ГРМ), в который выходят клапаны. В зависимости от мотора ГРМ приводится в действие ремнем или цепью.

Рассмотрим цилиндр в разрезе:

Четыре такта

Любой двигатель функционирует согласно циклу, состоящему из нескольких тактов, то есть ходов (движений) поршня. Большинство автомобильных моторов — четырехтактные.

Рассмотрим такты бензинового двигателя:

  1. Впуск: открывается впускной клапан, в камеру сгорания попадает топливно-воздушная смесь, а поршень идет вниз.
  2. Сжатие: оба клапана закрыты, поршень идет вверх, сжимая и нагревая смесь.
  3. Рабочий ход: оба клапана закрыты, под действием электрической искры от свечи зажигания сжатая и разогретая топливно-воздушная смесь воспламеняется, образовавшиеся при этом газы толкают поршень вниз.
  4. Выпуск: выпускной клапан открыт, поршень идет вверх, выталкивая отработанные газы в сторону выхлопной трубы.

После этого цикл повторяется. У дизельного двигателя вместо свечи установлена форсунка, и смесь воспламеняется не при помощи искры, а от сжатия — впрыска дизельного топлива через форсунку под большим давлением. Впускной клапан при этом подает в камеру сгорания только воздух. Кстати, в некоторых современных бензиновых моторах форсунка тоже впрыскивает топливо непосредственно в цилиндр.

А как запускается первый такт?

Каждый автомобиль обладает набором бортовой электроники — проводов, аккумулятора, стартера и т. д. Аккумулятор за время поездок накапливает достаточно энергии, чтобы при помощи специального механизма — стартера — раскрутить коленвал и завести мотор.

И что дальше?

Мощность от двигателя к колесам передается с помощью коробки передач, редуктора и приводных валов. Если мотор соединить с колесами напрямую, автомобиль после запуска начнет движение на одной-единственной передаче, с небольшой скоростью, а после торможения сразу заглохнет. Об этих передачах и о типах коробок (автоматах, вариаторах, механиках и т. д.) Mafin Media расскажет в следующем материале.

Принцип работы 2х тактного и 4х тактного двигателей

При выборе силового оборудования необходимо уделить особое внимание типу двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный.

Принцип действия двигателя внутреннего сгорания основан на использовании такого свойства газов, как расширение при нагревании, которое осуществляется за счет принудительного воспламенения горючей смеси, впрыскиваемой в воздушное пространство цилиндра.

Зачастую можно услышать, что 4-х тактный двигатель лучше, но чтобы понять, почему, необходимо более подробно разобрать принципы работы каждого.

Основными частями двигателя внутреннего сгорания, независимо от его типа, являются кривошипно-шатунный и газораспределительный механизмы, а также системы, отвечающие за охлаждение, питание, зажигание и смазку деталей.

Передача полезной работы расширяющегося газа осуществляется через кривошипно-шатунный механизм, а за своевременный впрыск топливной смеси в цилиндр отвечает механизм газораспре6деления.

Четырехтактные двигатели - выбор компании Honda

Четырехтактные двигатели экономичные, при этом их работа сопровождается более низким уровнем шума, а выхлоп не содержит горючей смеси и значительно экологичней чем у двухтактного двигателя.  Именно поэтому компания Honda при изготовлении силовой техники использует только четырехтактные двигатели. Компания Honda уже многие годы представляет свои четырехтактные двигатели на рынке силовой техники и добилась высочайших результатов, при этом их качество и надежность ни разу не подвергались сомнению. Но всё же, давайте рассмотрим принцип работы 2х и 4х тактных двигателей.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: сжатие и рабочий ход.

Сжатие. Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное, а затем выпускное окно, после чего газ, находящийся в цилиндре, начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем сжатии.

Рабочий ход. После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Дальнейшее движение поршня приводит к сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания.

Основным недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает принести пользу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты, что приводит к частичному выбросу горючей смеси в атмосферу. Еще идёт постоянный расход масла, так как 2х тактные двигатели работают на смеси бензина и масла. Очередное неудобство - в необходимости постоянно готовить топливную смесь. Главными преимуществами двухтактного двигателя остаются его меньшие размеры и вес по сравнению с 4х тактным аналогом, но размеры силовой техники позволяют использовать на них 4х тактные двигатели и испытывать намного меньше хлопот в ходе эксплуатации. Так что уделом 2х тактных моторов осталось различное моделирование, в частности, авиамоделирование, где даже лишних 100г имеют значение. 

Принцип работы четырехтактного двигателя

Работа четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов.

Во время впускного этапа поршень двигается вниз, открывается впускной клапан, и в полость цилиндра поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь.

При сжатии поршень движется от НМТ к ВМТ, оба клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня от ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан.

Во время выпускного этапа продукты сгорания, вытесняемые поршнем, движущимся от НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов четырехтактные двигатели внутреннего сгорания более экономичны и экологичны - ведь выброс неиспользованной топливной смеси исключен. В работе они значительно тише, чем 2х тактные аналоги, и в эксплуатации намного проще, ведь работают на обычном АИ-92, которым вы заправляете свою машину. Нет необходимости в постоянном приготовлении смеси масла и бензина, ведь масло в данных двигателях заливается отдельно в масляный картер, что значительно уменьшает его потребление. Вот именно поэтому компания Honda производит только 4х тактные двигатели и достигла в их производстве колоссальных успехов.

Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Обрати внимание!

Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.

 

Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).

 

Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.

  1. клапан для подачи горючей смеси;
  2. клапан для удаления отработанных газов;
  3. цилиндр;
  4. шатун;
  5. коленчатый вал;
  6. свеча для воспламенения горючих газов в цилиндре 3.

 

Рис. \(1\). Устройство двигателя

 

Ход поршня — расстояние между мёртвыми точками, крайними положениями поршня в цилиндре.

 

Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).

 

 

Рис. \(2\). Процесс работы двигателя

 

1 такт (впуск) — поршень «всасывает» горючую смесь.

 

 

2 такт (сжатие) — при сжатии температура смеси и давление повышаются. 

 

3 такт (рабочий ход) —  рабочая смесь воспламеняется от электрической искры свечи зажигания (поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создавая крутящий момент). 

 

 

4 такт (выпуск) — выброс отработанных газов.

 

 

После такта выпуска начинается новый рабочий цикл, всё повторяется.

Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.

Источники:

Рис. 1. Устройство двигателя. © ЯКласс.
Рис. 2. Процесс работы двигателя. © ЯКласс.
http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4

http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg

 

Принцип работы дизельного двигателя – чтобы смог понять каждый! Принцип работы дизельного двигателя – мотор в разрезе Варианты дизельных двигателей.

Если в нескольких словах описать принцип работы дизельного двигателя, то можно сказать, что зависит он во многом от давления, создаваемого в камере сгорания. Отличий от бензиновых моторов не очень много: имеется и блок, и ГБЦ, и форсунки, которые чем-то схожи с теми, которые используются в инжекторной системе впрыска. Единственное существенное отличие – топливо-воздушная смесь воспламеняется не от искры, которая проскакивает между электродами свечи, а от колоссального сжатия воздуха, которое нагревает и воспламеняет дизтопливо. Так как в цилиндрах очень высокое давление, то клапаны должны выдерживать большие нагрузки. Применяют дизельные моторы в большинстве своем на грузовиках, но нередко можно встретить и легковушки, работающие на дизтопливе.

Воспламенение топлива в дизельном двигателе

В основе дизельного мотора лежит компрессионное воспламенение топлива. Причем солярка, попадая в камеру сгорания, соединяется с нагретым воздухом. Вот и отличие в образовании смеси от бензинового двигателя – солярка и воздух в камеры сгорания поступают независимо, смешиваются непосредственно перед воспламенением. Сначала поступает некоторое количество воздуха. Когда он сжимается, начинается его нагревание (примерно до 800 градусов). Топливо поступает в цилиндр под давлением от 10 до 30 МПа. После этого оно воспламеняется. При работе возникает немало шума, а уровень вибраций достаточно высокий. По такому простому признаку легче всего отличить автомобиль с дизельным мотором. Кстати, в его конструкции свечи все-таки есть, вот только назначение у них совершенно иное. Они не воспламеняют смесь, а прогревают камеры сгорания, чтобы зимой проще было завести двигатель. Они так и называются – свечи накаливания.

Существуют как двух-, так и четырехтактные дизельные двигатели. Последние применяются на большинстве автомобилей и работают в таком режиме:

  1. Такт впуска.
  2. Происходит сжатие воздуха и впрыскивание топлива.
  3. Взрыв горючей смеси, поршень перемещается вниз, совершая рабочий ход.
  4. Производится выпуск отработанных газов, начало первого такта.

Свечи накала дизельного двигателя

До некоторых пор дизтопливо имело низкую стоимость, поэтому экономия для владельцев дизельных машин была существенная. Но вот капитальный ремонт, например, обходится намного дороже, в отличие от бензинового мотора. Да и устройство дизельного двигателя для большей части автомобилистов малознакомо.

Какие типы дизельных моторов существуют

Если провести разделение по конструкции, то можно выделить всего три вида:

  1. Двигатели, имеющие разделенную камеру сгорания. Суть проста – топливо-воздушная смесь поступает не сразу в камеру сгорания. Первоначально она попадает в отдельный отсек, называемый вихревой камерой. Эта камера расположена в ГБЦ. Между камерой сгорания и этим отсеком располагается небольшой канал. Именно в вихревой камере воздух способен сжаться до большого давления. Следовательно, его нагрев окажется сильнее и воспламенение топлива улучшается. В этом же отсеке происходит первоначальное воспламенение топлива. Затем процесс плавно переходит уже в основную камеру сгорания.
  2. С камерой сгорания, не разделенной на отсеки. Такие моторы имеют максимальный уровень шума, зато топлива потребляют меньше. В поршне имеются небольшие углубления, в которые попадает топливная смесь. Воспламеняется она непосредственно над поршнем, после чего сила взрыва толкает его вниз.
  3. Предкамерные ДВС имеют в своей конструкции вставную форкамеру. От нее к основной камере сгорания идет несколько тонких каналов. Большая часть характеристик дизельного двигателя такого типа (уровень шума, ресурс, токсичность, расход топлива, создаваемые вибрации, мощность) зависят от числа каналов, их толщины и формы.

Форсунки дизельного двигателя

Основные узлы топливной системы

Можно сказать, что топливная система – это основа дизельного мотора. Она подает под заранее установленным давлением топливо в камеру сгорания. Причем необходимо строго определенное количество солярки и воздуха. Основные элементы системы:

  1. ТНВД (топливный насос высокого давления).
  2. Топливный фильтр.
  3. Форсунки.

Рассмотрим устройство топливной системы дизельного двигателя более подробно.

Топливный насос высокого давления

На автомобилях, которые сегодня можно встретить на дорогах, в основном, установлены насосы следующих типов:

  1. Распределительные.
  2. Плунжерные (рядные).

Функция насоса заключается в том, чтобы забрать из бака топливо и передать его к форсункам. Причем зависит его работа от многих параметров, среди которых давление воздуха в турбине, количество оборотов коленчатого вала и прочего. Главное отличие от насосов, устанавливаемых на простые бензиновые автомобили заключается в том, что насосу дизельного двигателя необходимо создать гораздо большее давление топлива, чтобы оно все-таки могло быть впрыснуто непосредственно в камеру сгорания, в которой и так уже находится воздух под высоким давлением.

Топливный насос высокого давления дизельного двигателя

Топливный фильтр

Для каждого мотора предусмотрен свой, незаменимый, тип фильтра. Как видно из названия, необходим он для очистки солярки, поступающей из бака. Им будут задержаны любые, даже самые мелкие, частицы. Также он удаляет из системы излишки воздуха и влаги.

Топливные форсунки

Насос высокого давления имеет прочную связь с форсунками. Именно от этих двух элементов зависит, своевременно ли поступит топливо в камеру сгорания (а оно должно быть распылено в момент нахождения поршня в верхней мертвой точке). В конструкции современного дизельного двигателя используют следующие типы форсунок:

  1. Многодырчатые.
  2. Имеющие шрифтовый распределитель.

Распределитель форсунок отвечает за форму факела, чтобы топливо равномерно поступало в камеру сгорания и его воспламенение происходило наиболее эффективно.

Предпусковой подогрев и турбина

Турбина дизельного двигателя

Система холодного пуска необходима для прогрева непосредственно перед запуском двигателя. Как уже упоминалось, в камере сгорания находятся свечи, которые работают по типу паяльника – в них расположена спираль, под действием электрического тока она нагревается до девятисот градусов. Весь воздух, поступающий в камеру сгорания, тоже нагревается. Такая система срабатывает непосредственно перед началом запуска и отключается через четверть минуты после того, как двигатель завелся. В процессе работы она не участвует. Благодаря этой системе в сильные морозы проще завести двигатель (если только солярка в баке и топливопроводе не приобретет желеобразный вид).

А вот система турбонаддува может значительно увеличить мощность, производимую двигателем. За счет нее происходит нагнетание большого количества воздуха. В результате этого процесс сгорания топлива значительно улучшается. Чтобы воздух поступал под давлением при любом режиме работы, устанавливается специальный турбонагнетатель. Рассмотрим в общих чертах устройство турбины дизельного двигателя. Турбина — представляет из себя две крыльчатки, расположенная на валу из стали. Причем одна из крыльчаток находится в выпускном коллекторе и раскручивается выпускными газами. При этом вал начинает передавать вращательное движение второй крыльчатке, находящейся уже во впускном коллекторе. С ее помощью создается дополнительное давление воздуха во впускном тракте. Система турбонаддува заключена в чугунный корпус. Как и все агрегаты двигателя корпус подвержен износу. Обороты крыльчатки очень высокие, именно по этой причине и происходит разрушение. Корпус турбины имеет форму улитки, поэтому в ней происходит сложное движение газового потока, приводящего в движение весь механизм наддува. При изготовлении турбины крайне важны точное литье и подгонка всех деталей.

Вместо заключения

Споры о недостатках и преимуществах дизельных двигателей звучат с момента их появления. Нельзя однозначно сказать, что именно дизельный мотор является правильным выбором. Выбрать или нет автомобиль с дизельным мотором — решение по-прежнему каждый принимает сам. Поэтому необходимо знать, как работает дизельный двигатель при различных нагрузках и в определенном климате.

Того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива - прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Принцип работы

Четырёхтактный цикл

  • 1-й такт. Впуск . Соответствует 0° - 180° поворота коленвала. Через открытый ~от 345-355° впускной клапан воздух поступает в цилиндр, на 190-210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов .
  • 2-й такт. Сжатие . Соответствует 180° - 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение . Соответствует 360° - 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле - величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей - «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск . Соответствует 540° - 720° поворота коленвала. Поршень идёт вверх, через открытый на 520-530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой : камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство - минимальный расход топлива. Недостаток - повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой : топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Продувка двухтактного дизельного двигателя: внизу - продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла .

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки - осуществляется продувка , совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение - поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых - еще - впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами - один впускными, другой выпускными (система Фербенкс-Морзе - Юнкерса - Корейво : дизели этой системы семейства Д100 использовались на тепловозах ТЭ3 , ТЭ10 , танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации - на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6-1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф . В крейцкопфных двигателях шатун присоединяется к крейцкопфу - ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей - крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто - двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями . Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году) . Это является преимуществом также и в двигателях морских судов , так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя , а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах - это углеводороды (НС или СН) , оксиды (окислы) азота (NO х) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов , которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания . Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта, в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых - характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO 2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail . В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками . Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный - и экологически такой же чистый, как и бензиновый - дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF - фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы - и «интеркулера » - устройства, охлаждающего воздух после сжатия турбонагнетателем - чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях - в устаревших дизелях - головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы , дизелевозы , дизель-поезда , автодрезины) и безрельсовых (автомобили , автобусы , грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы , асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Дизельный двигатель с турбонаддувом

  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW , которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично - от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше . Срок службы дизельного двигателя больше бензинового и может достигать 400-600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Конфигурация - 14 цилиндров в ряд

Рабочий объём - 25 480 литров

Диаметр цилиндра - 960 мм

Ход поршня - 2500 мм

Среднее эффективное давление - 1,96 МПа (19,2 кгс/см²)

Мощность - 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент - 7 571 221 Н·м

Расход топлива - 13 724 литров в час

Сухая масса - 2300 тонн

Габариты - длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность - 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент - 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7 .

Конфигурация - 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём - 5934 см³

Диаметр цилиндра - 83 мм

Ход поршня - 91,4 мм

Степень сжатия - 16

Мощность - 500 л.с. при 3750 об/мин. (отдача с литра - 84,3 л.с.)

Крутящий момент - 1000 Нм в диапазоне 1750-3250 об/мин.

Каждый водитель имеет свои соображения по поводу того, какой силовой агрегат на самом деле лучше. Одни считают, что малый объем приносит большое преимущество и дает экономию топлива. Другие полагают, что стоит покупать только бензиновый двигатель из-за его неприхотливости и универсальной эксплуатации. Третьи выбирают только объемистые дизели с турбиной для получения громадного удовольствия от прекрасной тяги. Давайте разберемся с тем, как стоит эксплуатировать дизельный силовой агрегат, который имеет ряд особенностей использования. Правильная эксплуатация может значительно продлить срок жизни агрегата и предоставить немало важных преимуществ. Если же вы пересядете с бензинового внедорожника на дизельный без смены привычек, то вашего силовому агрегату придется непросто.

Использования двигателей - это тема, которую можно обсуждать бесконечно. Основываясь на том, какие особенности поездки нарушают владельцы техники в сравнении с заводскими рекомендациями, можно очень просто подыскать целый ряд важных рекомендаций. Вопрос этот касается заправки определенного топлива и заливания масла, сервисного обслуживания, а также ремонта. Есть определенные советы по практичной эксплуатации для понижения расхода и износа дизельного двигателя. Можно также вспомнить зимнее использование дизельного двигателя, которое должно быть очень аккуратным. Учитывая все представленные категории, мы можем сформировать несколько важных советов для владельцев дизельных силовых агрегатов. Стоит только сказать, что все сказанное ниже относится к современным турбированным дизелям, которые устанавливаются на массовые легковые машины.

Заправка и обслуживание - два важнейших момента использования

В первую очередь при покупке дизельного силового агрегата нужно выбрать нормальное место заправки. Речь идет не только о качественном бренде заправочной станции, но и о качестве солярки, что не всегда совпадает. Воспользуйтесь рекомендациями специалистов и проверьте солярку на качество с помощью нехитрых тестов. Топливо не должно замерзать, мутнеть и должно быть чистым в любых условиях. Также стоит соблюдать рекомендации по обслуживанию:

  • для дизельного силового агрегата многие производители ставят несколько меньший межсервисный интервал, чем для бензиновых двигателей, но это не всегда именно так;
  • нужно на сто процентов соблюдать все условия обслуживания, которые выставлены производителем автомобиля, использовать только оригинальные материалы на сервисе;
  • при покупке неизвестного масла можно попрощаться с двигателем уже через 10-20 тысяч километров, фильтры также стоит покупать оригинальные и очень качественные;
  • особое внимание нужно уделить диагностике оборудования во время проведения сервиса - это поможет избежать самых неприятных неполадок, связанных с ТНВД, и головкой блока;
  • выполнять ремонт дизельного двигателя нужно сразу после того, как автомобиль показал неполадку, это поможет сохранить определенное качество и нужные свойства установки.

Если бензиновый двигатель иногда эксплуатируют успешно и с неполадками, то в дизельных силовых агрегатах такая идея не пройдет. Нужно использовать услуги профессионального сервиса для обслуживания Common Rail, турбины, ТНВД и головки блока цилиндров. Именно эти детали наиболее часто выходят из строя и доставляют определенные неприятности в процессе эксплуатации. Поломка может полностью вывести агрегат из строя.

Как ездить на дизельном двигателе с турбиной современного типа?

Актуальные силовые агрегаты на тяжелом топливе не слишком сильно отличаются от бензиновых двигателей. Вопрос качества поездки может оказаться весьма серьезным, поскольку неправильная эксплуатация приводит к ряду проблем. Нужно помнить основные рекомендации, а также почитать особенности и индивидуальные советы в инструкции по эксплуатации вашего автомобиля. Базовые рекомендации для таких двигателей следующие:

  • используйте высокий крутящий момент при низком показателе оборотов - не раскручивайте дизельный двигатель до высоких показателей оборотов силового агрегата;
  • воспользуйтесь удобным ранним переключением передач и прекрасными тяговыми характеристиками автомобиля с дизельным двигателем, это поможет получить комфорт;
  • не перегревайте агрегат, длительная работа на повышенных оборотах или эксплуатация на бездорожье в срединном режиме выводит из строя ТНВД и прочие важные модули;
  • не стоит гонять на дизельной машине - вы покупаете автомобиль для комфорта и низкого расхода, поэтому используйте все важные преимущества транспорта с такими чертами;
  • в городе вполне возможна поездка на скорости 60-70 километров в час с использованием последней передачи - это один из любимых режимов работы дизельного агрегата.

Нужно понимать, что дизель имеет совершенно иную структуру, нежели привычный нам бензиновый двигатель. Есть ряд преимуществ, но и недостатки имеются. Поэтому всегда нужно изучать рекомендации производителя по использованию автомобиля, иначе можно попасть в неприятную ситуацию. Используйте наиболее качественные решения поездки и всегда стремитесь соблюдать рекомендации завода. Это поможет сохранит работоспособность вашей машины.

В чем важные преимущества дизельного двигателя?

Силовой агрегат дизельного типа известен тем, что кушает меньше топлива, чем бензиновый собрат с подобными характеристиками мощности. Это действительно так, но силовой агрегат дизельного типа является одним из растратчиков бюджета на сервисе, он требует большего количества денег для выполнения всех поставленных задач. Поэтому стоит выделить такие чистые и неоспоримые преимущества силового агрегата на тяжелом топливе:

  • возможность раннего переключения передач, очень хороший крутящий момент, который подхватывает КПП в любом режиме и прекрасно едет даже в неудачно выбранном положении;
  • очень высокие показатели тяги непосредственно в процессе разгона, то есть на низких оборотах возникает самый высокий показатель оптимальной полезной мощности агрегата;
  • сниженный расход топлива в сравнении с бензином выравнивает стоимость эксплуатации силового агрегата на тяжелом топливе, так что он не обойдется вам намного дороже;
  • срок эксплуатации дизеля при соблюдении всех важных рекомендаций будет достаточно высоким, с аппаратом не возникает никаких проблем, многие доезжают до 500 000 км;
  • экологическая чистота выбросов намного лучше, чем у бензиновых вариантов, отсутствие угарный газ, а вот твердые частицы есть, и часто они превышают норму для авто такого класса.

Современные разработки силовых агрегатов становятся все более утонченными и требовательными. Поэтому стоит внимательно следить за каждым обновлением и перед покупкой изучать двигатель, информацию и отзывы о нем. Один и тот самый агрегат в разных поколениях автомобилей от производителя может иметь совершенно разные варианты эксплуатации. И в данном случае можно получить действительно разочарование при покупке.

Как эксплуатировать дизельный двигатель зимой?

Зимняя эксплуатация силового агрегата с дизельным топливом происходит несколько сложнее. Если бензин не застывает вообще в принципе, то температура помутнения дизельного топлива составляет -25 градусов Цельсия. Температура замерзания уже при -35 градусах исключает эксплуатацию авто в таких условия. Впрочем, сегодня есть солярка с присадками, которая без проблем используется в любых условиях. Есть ряд осторожных моментов:

  • зимой в дизельном двигателе неплохо было бы установить турботаймер, который продолжал бы медленно снижать температуру двигателя после поездки, когда вы уже вышли из авто;
  • также следует выбирать зимнее топливо на заправке, выбрав изначально нормальную заправочную станцию, на которой вы не зальете в бак некачественную жидкость;
  • можно также использовать ряд присадок для снижения температуру кристаллизации топлива, когда залитое в бак горючее превращается в гелеобразную массу;
  • после превращения солярки в гель придется везти машину на сервис, причем на эвакуаторе, чтобы вычистить топливные элементы и шланги для дальнейшего использования.

По этим причинам дизельные машины в северных условиях - это не самый удачный вариант. В средней полосе России такие авто вполне приемлемы и могут выполнять свои функции прекрасно. На юге вообще не возникает проблем с их эксплуатацией. Тем не менее, нужно учитывать ряд особенностей по использованию топлива и качеству сервисного обслуживания вашего авто. Предлагаем посмотреть небольшое видео про особенности дизельного автомобиля:

Подводим итоги

Есть ли смысл покупки дизельного автомобиля? В экономическом плане этого смысла практически нет. Но в плане поездки, ваши условия действительно серьезно поменяются. Вы познакомитесь с новой технологией, которая полностью открывает новое восприятие автомобильного транспорта. Есть ряд положительных и ряд отрицательных факторов использования такого транспорта. Но зачастую любители дизелей утверждают, что плюсы значительно превосходят минусы. Конечно, все это очень условно. Вы можете приобрести дизель и остаться крайне недовольным ситуацией при первой поломке зимой. Но помните, что качество эксплуатации напрямую зависит от вас.

Также следует помнить о заправке, которая может быт нормальной и ужасной. Если бензиновый агрегат от плохой заправки просто повысит расход, то дизельное топливо может уничтожить ряд дорогостоящих элементов в машине. Поэтому в Европе, к примеру, эксплуатировать дизельные агрегаты непроблематично. С другой стороны, всегда есть ряд сложностей во владении автомобилем с таким агрегатом. Так что если вы боитесь этих сложностей, лучше выбирайте бензиновую машину. Если же хотите попробовать нечто новое, смело покупайте турбодизель. А какой двигатель вы бы предпочли для личной эксплуатации?

Статья о главных плюсах и минусах дизельного двигателя. Важные особенности эксплуатации. В конце статьи - видео о том, какой мотор круче, бензиновый или дизель!


Содержание статьи:

При покупке автомобиля с широкой гаммой предлагаемых двигателей перед автомобилистом всегда стоит непростой вопрос, заключающийся не только в выборе оптимального сочетания мощности и рабочего объёма, но и типа мотора в целом. Противостояние дизелей и традиционных бензиновых агрегатов продолжается уде достаточно долго. Поскольку и те, и другие имеют ряд преимуществ и недостатков, рассмотрим их подробнее.

Какие бывают нюансы дизельного двигателя


Ещё совсем недавно благодаря тому, что дизельное топливо стоило почти вдвое дешевле бензина, на недостатки такого мотора смотрели сквозь пальцы, ведь дешевое топливо сочеталось с его малым расходом и великолепными тяговыми способностями автомобиля.

Главными же недостатками были повышенная шумность, сильная вибронагруженность и невысокая разгонная динамика.


Сейчас ситуация изменилась в корне, и хорошее дизельное топливо, несмотря на то, что это фактически попутный продукт нефтепереработки, стоит дороже бензина. Помимо этого сам дизельный мотор ощутимо дороже и сложнее в эксплуатации и обслуживании, чем бензиновый.

При таком соотношении факторов выбор уже не ограничивается размеренной экономичной ездой или динамичной, но чуть более расходной. Под вопросом стоит сам факт целесообразности приобретения автомобиля на дизельном топливе, ведь несмотря на огромную работу, направленную на устранение его слабых мест, часть недостатков по-прежнему устранить не получилось.

Мы не будем рассматривать в данной статье грузовой автотранспорт, для которого важнейшим показателем является тяга при высокой нагрузке, а также экономичность, поскольку большинство коммерческого автопарка вообще не предлагает бензиновых версий. Это обусловлено тем, что дизельный двигатель большого объёма при высоких нагрузках гораздо предпочтительнее своего бензинового собрата в плане экономичности. Ведь когда речь идёт о расходе топлива в десятки литров на сто километров, даже незначительная экономия выглядит внушительно в денежном выражении.

Кроме того, для подобных машин езда на высоких оборотах вообще не нужна. Бензиновый двигатель при максимальной нагрузке склонен к существенному увеличению расхода топлива, дизель в этой ситуации отличается большей стабильностью.

Особенности конструкции дизельного двигателя


Использование тяжёлого топлива предполагает совершенно иные принципы работы дизельного двигателя, что находит своё отражение в его конструкции. Периодически появляются новости о том, что тот или иной завод освоил производство дизельных моторов на основе бензиновой версии, это в основном относится к устаревшему производству маломощных моторов, которые не славятся своей надёжностью. Как признают специалисты, желательно, чтобы дизельный и бензиновый моторы не имели общих деталей и создавались независимо друг от друга.

Прежде всего, дизельный двигатель производят из гораздо белее прочных сплавов, а его детали, такие как блок цилиндров, поршни, шатуны, коленвал рассчитаны на гораздо большие нагрузки. Это связано с тем, что степень сжатия дизельного мотора составляет 19-24 единицы, а у бензинового всего 9-12. Это приводит к увеличению массы и габаритов агрегата.

Ключевое же отличие кроется в системах питания и зажигания. В бензиновом моторе смесеобразование происходит во впускной системе, то есть в цилиндр поступает готовая смесь топлива и воздуха, которая воспламеняется свечой зажигания. В дизельном всё несколько сложнее - сначала в камеру сгорания поступает воздух, который нагревается до 800 градусов Цельсия, после чего под огромным давлением туда впрыскивается топливо, и полученная смесь воспламеняется свечой накаливания.

В процессе горения создаётся огромное давление, которое и обеспечивает огромный крутящий момент, но в то же время приводит к повышенной шумности. Такой принцип действия обеспечивает стабильную работу мотора на обеднённых смесях, что и даёт хорошие показатели экономичности.


Огромное внимание при эксплуатации дизельного мотора следует уделять качеству топлива, поскольку применяемые топливные насосы высокого давления стоят гораздо дороже простого бензонасоса.

Данная система питания мотора сейчас получила наибольшее распространение, но существуют и более экзотичные варианты с насос-форсунками, в которых совмещены функции подачи и распыления топлива, что позволяет осуществлять замену только одного элемента при его выходе из строя, но делает дизельный двигатель ещё более требовательным. К тому же подобные узлы неремонтопригодны.

Высокая стоимость такого мотора обусловлена ещё и тем, что зачастую он оснащается рядом важных вспомогательных систем, таких как подогрев топливного бака и обратки, противосажевые фильтры и усиленные демпфирующие подушки.

Помимо этого, большинство современных дизелей оснащены турбонаддувом, что позволяет существенно улучшить динамические показатели и ускорить выход на максимальные обороты, экономичность при этом также немного улучшается. Основным негативным фактором при этом является цена как самого турбокомпрессора, так и его замены. Этот узел рассчитан на меньший срок эксплуатации, чем мотор, кроме того он очень чувствителен к качеству рабочих жидкостей и расходных материалов. В ряде случаев его ремонт не предусмотрен, компрессор меняется целиком.

Вопреки расхожему мнению, дизельные двигатели, так же как и бензиновые, могут подвергаться капитальному ремонту, технологии которого весьма сходны. Единственным моментом, который следует учитывать если вы приобретаете подержанный автомобиль или собираетесь его эксплуатировать долгие годы, является конструкция блока цилиндров.

Существуют дизельные моторы, в которых блок цилиндров и его головка объединены в единый неразборный элемент, что приводит к необходимости поиска специализированных мастерских, которые могли бы осуществить проточку подобной конструкции. Большинство сервисов попросту не имеют подобного оборудования.

Как правильно эксплуатировать дизельные двигателя


Что касается конечного потребителя, то ему важно помнить об основных нюансах дизеля, таких как использование разных его сортов в зимнее и летнее время. Дело в том, что соляр при отрицательных температурах густеет и полученная гелеобразная масса может попросту забить топливную систему и даже повредить её, поэтому до наступления холодов на АЗС завозят дизельное топливо со специальными присадками.

Это важно помнить тем, кто редко пользуется автомобилем, ведь заправившись в теплое время года, выехать зимой уже не получится. Для этого придётся приобретать присадки и доливать их в бак самостоятельно. Старая технология добавления в летний сорт соляра небольшого количества керосина может оказаться губительной для современного мотора.

Зимняя эксплуатация дизеля сопряжена ещё и с тем, что его крайне медленный прогрев не позволяет быстро добиться от штатной системы отопления нагрева салона. Для автомобилей с большим салоном, а также для внедорожников и универсалов это приводит к необходимости устанавливать автономный отопитель.

Не стоит забывать и про то, что необходимо пристальнее следить за уровнем топлива, ведь если закончится бензин, его достаточно просто долить в бак, в случае же с дизелем в систему попадает воздух, который без специальной прокачки запустить мотор уже не позволит.


В отличие от старых моделей, современные дизельные двигатели крайне чувствительны к качеству топлива, а невнимательность к этому факту может привести к гораздо более дорогостоящему ремонту, нежели в случае с бензиновым.

На этом фоне самым малозначимым недостатком дизельного мотора является достаточно узкий рабочий диапазон, что фактически выливается в необходимость чаще переключать передачи. Конечно, в случае с «автоматом» этот факт становится незаметным, но потребность в большем количестве передач очевидна.

Современный дизельный двигатель буквально нашпигован различными электронными системами, поэтому обслуживание должно осуществляться только в авторизованном центре. Кроме того, для этих моторов замена рабочих жидкостей должна производиться почти вдвое чаще.

Для многих автовладельцев важным фактором является безопасность. Дизельное топливо крайне сложно воспламеняется и не склонно к самовозгоранию или взрыву, поэтому в случае протечки топливного бака в результате серьёзного ДТП риск возникновения пожара крайне мал.

Борьба с недостатками дизельного двигателя


Все вышеперечисленные недостатки дизельных моторов обусловлены объективными причинами и их конструктивными особенностями, поэтому в ряде случаев избавиться от них практически невозможно.

Например, повышенная вибрация связана с резким нарастанием давления в камере сгорания в середине рабочего цикла, поэтому борьба с этим явлением ведётся в двух направлениях – уменьшение последствий, то есть применение подушек двигателя, эффективно гасящих вибрации и корректировка режима работы. Что касается последнего, то современные дизельные моторы отличаются пониженной степенью сжатия, это несколько стабилизирует процесс, но постепенно лишает дизель его преимуществ – крутящего момента и экономичности.

Снижение степени сжатия положительно влияет и на уменьшение шумности, но, как уже было сказано, отрицательных факторов у такого решения предостаточно. Единственным рациональным выходом пока является применение эффективной шумоизоляции.

Более дорогостоящие решения в виде демпферов крутильных колебаний также позволяют уменьшить недостатки данного типа двигателей, но, помимо роста стоимости, приводят к ещё большему усложнению процесса обслуживания.

Серьёзные работы ведутся над совершенствованием камеры сгорания, чтобы обеспечить качественное смесеобразование путём создания в ней турбулентных завихрений. Для стабилизации процесса воспламенения и снижения детонации разработаны моторы с двумя форсунками на цилиндр, что, однако, приводит к существенному удорожанию конструкции.


Более того, для полноты сгорания топлива применяется система рециркуляции, которая направляет часть выхлопа обратно во впускной коллектор, что снижает температуру в камере сгорания и может привести к преждевременному износу, поскольку полностью очистить газы от твёрдых частиц сажи практически невозможно.

Достоинства дизельного агрегата в автомобиле


Перечислим основные плюсы дизельного мотора:
  • экономичность;
  • больший ресурс;
  • тяговооружённость и огромный крутящий момент на низких оборотах.
Как видно, недостатков у такого мотора существенно больше, однако преимущества его столь значимы, что в определённых условиях полностью перекрывают все негативные факторы. К огромному сожалению, многие методы борьбы с недостатками существенно снижают конкурентные преимущества, поэтому к выбору такого мотора следует подходить осознанно, взвесив все «за» и «против».

Единственным негативным фактором, который был полностью устранён, является возможность саморазрушения дизеля. Это явление получило название «пошёл вразнос» и заключалось в бесконтрольном наборе оборотов мотором вплоть до выхода из строя. Современная система питания и электроника исключают возможность возникновения подобной ситуации.

Заключение о дизельном двигателе

Таким образом, дизельный двигатель является оправданным решением при интенсивной езде, перевозке большого количества груза или полной загрузке пассажирами, при буксировке прицепа или езде по бездорожью.

В случае степенной езды по хорошим дорогам экономичность данного типа мотора попросту не успеет компенсировать его цену, а также сложность и стоимость обслуживания. Стоит помнить, что недостатки дизеля на современном техническом уровне удалось лишь минимизировать, но не устранить.

Видео о том, какой двигатель круче, бензиновый или дизельный:

История дизеля начинается почти с изобретения бензинового двигателя. Николаус Август Отто изобрел и запатентовал бензиновый двигатель в 1876 году, который использовал принцип четырёхтактного сгорания, также известный на западе как "цикл Отто ", и это основная предпосылка для большинства автомобильных двигателей сегодня. В своей ранней стадии, однако, бензиновый двигатель был крайне неэффективным в своей работе, поэтому в те времена ещё долгое время широко использовался паровой двигатель для транспортировки всего, что было нужно транспортировать. Главным недостатком в работе обоих двигателей было то, что они эффективно использовали только около 10 процентов топлива из всего поступающего топлива в эти типы двигателей. Остальная часть просто превращалась в бесполезное тепло, а бензин выходил с выхлопом не сгоревшим.


Дизельный двигатель Porsche Cayenne S 2013 модельного года

Уже через 2 года - в 1878 году - Рудольф Дизель во время посещения политехнической средней школы в Германии (эквивалент инженерного университета в России) узнал о низкой эффективности работы бензиновых и паровых двигателей. Эта тревожная информация вдохновила его на создание двигателя, который мог бы работать с более высокой эффективностью, и он посвятил бóльшую часть своего времени на развитие такой технологии, которая бы позволила расходовать природные ресурсы нашей планеты гораздо эффективнее. И вот, наконец, только к 1892 году Дизель получил патент за то, что мы сегодня называем дизельным двигателем.


Рудольф Дизель и изобретённый им дизельный двигатель

Но если дизельные двигатели работают настолько эффективно, почему бы нам не использовать их чаще? Почему бы нам, в конце концов, не использовать только их? Вы можете увидеть слова "дизель", "солярка" и подумать о здоровенных грузовых автомобилях, извергающих из длинной выхлопной трубы чёрный, закопчённый дым при работе двигателями и создавая при этом довольно громкий гремящий шум. Этот негативный образ дизельных грузовиков сделал дизель менее привлекательным для обычных водителей в нашей стране, хотя дизель отлично подходит для перевозки крупных партий на большие расстояния, он практически никогда не был лучшим выбором для легковых автомобилей. Тем не менее, на сегодняшний день ситуация начинает меняться, и дизелем комплектуются даже заряженные версии легковых авто и изредка даже спортивные машины , так как современные технологии значительно улучшили дизельный двигатель, сделав его намного чище (экологичнее) и менее шумным.


А это дизельный двигатель большого теплохода мощностью около 10 000 лошадиных сил

Объясняя, как работает дизельный двигатель, мы будем опираться на то, что Вы уже знаете, как работает бензиновый четырёхтактный двигатель. Поэтому, если Вы ещё не сделали этого, Вам, вероятно, будет лучше прочитать сначала , чтобы получить ряд знаний и азов по основам двигателя внутреннего сгорания.

Дизель против бензина

В теории дизельный и бензиновый двигатели очень похожи. Они оба являются двигателями внутреннего сгорания, предназначенными для преобразования химической энергии топлива в доступную для дальнейшего движения автомобиля механическую энергию. Эта механическая энергия получается за счёт движения поршней вверх и вниз внутри цилиндров. Поршни соединены с коленчатым валом через шатуны, а сам коленвал имеет форму зигзага - получается, что линейное движение поршней создаёт вращательное движение коленвала, необходимое, чтобы повернуть колёса автомобиля и привести его (авто) в движение.

При этом, и дизельный, и бензиновый двигатели превращают топливо в механическую энергию через серию небольших взрывов, которые выталкивают поршни, заставляя их двигаться. Основное различие между дизелем и бензиновым "движком" заключается в том, что провоцирует эти взрывы. В бензиновом двигателе топливо смешивается с воздухом, сжимается поршнями и возгорается от искры, которая появляется от свечей зажигания. В дизельном двигателе, однако, сначала поршнем сжимается воздух, и только затем топливо впрыскивается. Так как воздух нагревается, когда он сжимается, топливо воспламеняется.

Как работает дизельный двигатель?

Анимация ниже показывает, как работает дизельный двигатель, в действии - также 4 цикла работы. Вы можете сравнить его с анимацией работы бензинового двигателя и увидеть различия.

Дизельный двигатель использует четырёхтактный цикл сгорания:

  1. Такт впуска - когда открывается впускной клапан, впуская воздух. В это время поршень движется вниз, засасывая воздух.
  2. Такт сжатия - поршень движется вверх и сжимает воздух, которому некуда деваться, так как впускной клапан закрылся.
  3. Такт воспламенения - когда поршень достигает вершины (верхней мёртвой точки, ВМТ), топливо впрыскивается в нужное время и воспламеняется, сильно толкая поршень вниз.
  4. Такт выпуска отработавших газов - поршень снова движется вверх, выталкивая выхлопные газы, созданные при сгорании топливо-воздушной смеси, из выпускного клапана.

Вот все 4 цикла работы дизельного двигателя, но ещё проще:

Следует помнить, что дизельный двигатель, в отличие от бензинового, не имеет свеч зажигания, а также впускает в цилиндры сначала воздух, а затем солярку (в цилиндры бензинового двигателя топливо-воздушная смесь поступает уже готовой). Именно тепло сжатого воздуха зажигает топливо в дизельном двигателе.

Интересный момент: при своей работе топливо-воздушная смесь в дизельном двигателе сжимается гораздо сильнее, чем в бензиновом - если бензиновый двигатель сжимает топливо и воздух в соотношении от 8:1 до 12:1, то дизельный двигатель сжимает воздух в соотношении от 14:1 до более, чем 25:1.

Инжектор (форсунки) в дизеле

Одна большая разница между дизельным двигателем и бензиновым двигателем заключается в процессе впрыска топлива. Большинство автомобильных двигателей используют инжектор для этого (или в редких уже на сегодняшний день случаях карбюратор). Инжектор впрыскивает топливо непосредственно перед тактом впуска (вне цилиндра). Карбюратор смешивает воздух и топливо задолго до того, как воздух поступает в цилиндр. В двигателе автомобиля, таким образом, все топливо загружается в цилиндр во время такта впуска, а затем сжимается поршнем. Сжатие топливо-воздушной смеси ограничивает степень сжатия двигателя - если сжать слишком много воздуха, то смесь топлива и воздуха спонтанно воспламенится и испортит двигатель, так как такт воспламенения начнётся раньше того момента, когда поршень достигнет верхней точки.

Дизельные двигатели используют непосредственный впрыск топлива - дизельное топливо впрыскивается непосредственно в цилиндр уже после того, как туда попадёт воздух. Инжектор или, как правильнее, топливные форсунки в дизельном двигателе является наиболее сложным компонентом и, нужно отметить, предметом большой доли экспериментов - в каждом конкретном двигателе инжектор может быть расположен в самых различных, а иногда и неожиданных местах. Инжектор должен быть способен выдерживать температуру и давление, которое создаётся внутри цилиндра, а ещё он должен смочь доставить топливо в виде мелкодисперсного тумана. Сделать так, чтобы этот туман, попадая в цилиндр, равномерно распределялся по нему, является большой проблемой, вот почему ряд дизельных двигателей используют специальные индукционные клапаны, камеры предварительного сгорания или другие устройства, чтобы создать завихрение воздуха в камере сгорания или иначе улучшить процесс зажигания и горения.


Работа топливной форсунки

Некоторые дизельные двигатели всё же содержат свечу. Когда дизельный двигатель холодный, процесс сжатия может не поднять до достаточно высокой температуры для воспламенения топлива сжатый воздух. Специальная свеча накаливания в дизеле по сути является проводом для электрического подогрева (представьте горячие проводки, которые Вы видели в тостере), который нагревает камеру сгорания и повышает, тем самым, температуру воздуха, когда двигатель холодный, так чтобы двигатель мог завестись.

Все функции в современном дизельном двигателе контролируются компьютером и продуманным набором датчиков, измеряющих практически всё: от оборотов коленчатого вала до системы охлаждения двигателя и температуры масла и даже положение двигателя относительно горизонта. Свечи накаливания используются редко сегодня на более мощных двигателях. Вместо них используются другие технологии, самая распространённая из которых - это более сильное сжатие воздуха (для большего нагрева) и более поздний впрыск топлива.

Тем не менее, в ряде дизельных двигателей не представляется возможным решить проблему запуска в холодную погоду указанным выше способом. Кроме того, есть двигатели, которые не имеют такие продвинутые технологии управления компьютером. Потому использование свечей накаливания для двух случаев выше решает проблему холодного запуска.

Дизельное топливо

Любое нефтяное топливо берёт своё начало из сырой нефти, которая, естественно, добывается из земли. Далее сырая нефть перерабатывается на нефтеперерабатывающих заводах и может быть разделена на несколько разных видов топлива, в том числе бензин, реактивное топливо, керосин и, конечно же, дизельное топливо (солярку).

Если Вы хоть раз пытались сравнить дизельное топливо и бензин, то Вы знаете, что они сильно разные. Даже их запах сильно отличается. Дизельное топливо тяжелее и более жирное. Оно испаряется значительно медленнее, чем бензин, а температура его кипения на самом деле выше, чем температура кипения воды. Вы, вероятно, часто слышали, что дизельное топливо называют "соляркой" - это потому что оно такое жирное (есть такое вещество - соляровое масло, и его раньше часто сравнивали с дизельным топливом).

Дизельное топливо испаряется медленнее, потому что оно тяжелее. Оно содержит больше углеродоатомов в длинных цепочках, чем бензин (бензин, как правило, имеет химическую формулу C9h30 (но может иметь и другую в зависимости от марки, октанового числа и т.п.), в то время как дизельное топливо, как правило, характеризуется формулой C14h40 ). Требуется меньшее время и количество этапов переработки для создания дизельного топлива, и поэтому оно как бы должно быть дешевле, чем бензин. Но в последние годы, однако, спрос на дизель поднялся по нескольким разным причинам, в том числе из-за повышенной индустриализации и строительства в нашей стране, и потому на сегодняшний день дизельное топливо стоит дороже бензина.

Дизельное топливо имеет более высокую так называемую плотность энергии , чем бензин. В среднем, 1 галлон (3,8 л) дизельного топлива содержит около 155x10 6 джоулей энергии, в то время как 1 галлон бензина содержит 132x10 6 джоулей. Это, в сочетании с повышенной эффективностью дизельных двигателей за счёт большей степени сжатия, объясняет, почему дизельные двигатели расходуют намного меньше топлива, нежели эквивалентные им бензиновые двигатели.

Дизельное топливо используется для питания широкого спектра транспортных средств и другой техники. Сюда, прежде всего, нужно включить, конечно же, дизельные грузовики, которые Вы видите крейсерящими по шоссе, но также дизель помогает двигаться лодкам, школьным автобусам, поездам, кранам, сельскохозяйственному оборудованию и тракторам, генераторам электричества и многой-многой другой технике. Подумайте о том, насколько важен дизель в экономике - без высокой эффективности дизельного топлива строительная индустрия и сельскохозяйственные предприятия страдали бы от требуемых инвестиций в топлива с низким энергопотреблением и эффективностью. Около 94 процентов грузов во всём мире - будь то отправленные грузовиками, поездами или кораблями - доставляются в конечные точки именно за счёт дизельного топлива.

Улучшение дизельного двигателя и дизельного топлива

С точки зрения окружающей среды дизель имеет и плюсы, и минусы. Плюс - дизель испускает очень небольшое количество угарного газа, углеводородов и углекислого газа - выбросов, более всего приводящих к глобальному потеплению. Минус - большие количества соединений азота и твёрдых частиц (сажи) высвобождаются во время сжигания дизельного топлива, что приводит к выпадению кислотных дождей, смогу и неудовлетворительному состоянию здоровья.

Во время большого нефтяного кризиса в 1970-х годах, европейские автомобильные компании начали рекламировать дизельные двигатели для коммерческого использования в качестве альтернативы бензину. Однако, те, кто попробовал их, были разочарованы - двигатели были очень громкими, и, когда потребители дизеля осматривали свои машины, то могли обнаружить их покрытыми чёрной копотью - той же сажи, ответственной за смог в больших городах.

За последние 30 до 40 лет, однако, огромные улучшения были сделаны в работе дизельного двигателя и чистоты дизельного топлива. Прямые впрыскивающие устройства в настоящее время контролируются передовыми компьютерами, которые контролируют сгорание топлива, повышение эффективности сокращения выбросов. Гораздо лучше рафинированные виды дизельного топлива, такие как дизтопливо с ультра низким содержанием серы в топливе (ULSD) снижает количество вредных выбросов. А модернизации двигателей, чтобы сделать их совместимыми с чистым топливом, становятся простой задачей. Другие технологии, такие как фильтры твёрдых частиц и каталитические нейтрализаторы, сжигают сажу и сокращают выбросы твёрдых частиц, оксида углерода и углеводородов на целых 90 процентов. Постоянно совершенствуя стандарты для экологически чистого топлива, Европейский Союз также будет толкать автоотрасль работать усерднее над снижением выбросов.


Вы может также слышали такой термин как "биодизель ". Это то же самое, что дизельное топливо? Биодизель является альтернативой или добавкой к дизельному топливу, которая может использоваться в дизельных двигателях практически без модернизации самих двигателей. При этом, как видно из названия, биодизель изготавливается не из нефти, вместо этого он приходит к нам из растительных масел или животных жиров, которые были химически изменены. Интересный факт: сам Рудольф Дизель изначально рассматривал растительное масло в качестве топлива для своего изобретения.


Биодизель может быть использован либо в сочетании с обычным дизельным топливом, либо полностью самостоятельно. Вы можете прочитать больше об альтернативных видах топлива

Двигатель внутреннего сгорания, устройство и принцип работы. Термодинамические процессы

1. Общие сведения о двигателе внутреннего сгорания

Двигатель - энергетическое устройство, используемое для преобразования какого-либо другого вида энергии в механическую работу. В сравнении с тем, какой вид энергии мы учитываем при переходе на работу, различают тепловые, электрические, водяные и другие двигатели. Данная работа посвящена одной из тепловых машин. Принцип работы двигателя внутреннего сгорания заключается в преобразовании химической энергии топлива внутри цилиндра в механическую работу.Это делается, как описано: тепло, выделяющееся при сгорании топлива, является результатом огромного увеличения давления в цилиндре, расширяющийся выхлопной газ перемещает поршень, который заставляет коленчатый вал двигателя вращаться с помощью шатуна. Эти действия выполняются поршнями без остановок.

Огромную группу двигателей внутреннего сгорания составляют поршневые двигатели. В эту группу входят в основном двигатели с традиционным поршнем, а также с циркулирующим поршнем (двигатель Ванкеля).

Каждый из нас, кто владеет автомобилем, знает, сколько у такого автомобиля рабочий объем.Небольшая группа людей знает, что такое смещение на самом деле и откуда берется его ценность. В поршневом двигателе за каждый полный ход поршень дважды находится в крайнем положении. Положение, в котором поршень наиболее удален от коленчатого вала, называется верхней мертвой точкой, а момент, когда он приближается к коленчатому валу, называется нижней мертвой точкой. Движение между этими двумя положениями называется ходом поршня, а движение называется ходом.Полный рабочий объем цилиндра определяется, когда поршень находится в нижней мертвой точке, а объем камеры сжатия - когда цилиндр находится в верхней мертвой точке. Рабочий объем – это разница между полным объемом цилиндра и объемом камеры сжатия. Приведенные ранее термины будут использоваться нами для правильной интерпретации работы двигателя.

2. Конструкция рассматриваемых двигателей

Все двигатели внутреннего сгорания сделаны из одних и тех же элементов, приспособленных только к конкретной задаче.Основным элементом двигателя является фюзеляж, в котором размещены цилиндры с поршнями, где происходит преобразование химической энергии в механическую. Кроме того, для эффективной работы двигателя используются различные типы систем, отвечающих за конкретные задачи. Различаем:

кривошипно-шатунная система - ее функция заключается в изменении возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала;

система газораспределения - маневрирует процессом наполнения цилиндров свежей топливно-воздушной смесью или только воздухом и опорожнением цилиндров отработавшими газами;

топливная система - благодаря ей в цилиндр подается смесь топлива и воздуха или отдельно топливо и воздух

система смазки - пополняет масло между взаимодействующими частями двигателя, с целью уменьшения сопротивления и трения; система охлаждения

– благодаря ей поддерживается наилучшая температура двигателя, что дает возможность экономичной эксплуатации;

система зажигания (используется только в двигателях с искровым зажиганием) - вызывает воспламенение смеси, состоит из механизма, вызывающего воспламенение искры;

пусковая система - используется для запуска двигателя, очень часто это электростартер.

3. Типы двигателей внутреннего сгорания

Эти двигатели классифицируются в соответствии с их различными характеристиками, которые коренным образом отличают один двигатель от другого. Сначала разделим двигатели по степени сжатия смеси в цилиндре. Разбивка следующая:

низкое давление,

дизель.

В двигателях с низкой степенью сжатия степень сжатия находится в пределах 6,5-11, а в дизелях 14-22. На самом деле на принадлежность к той или иной группе влияет способ воспламенения смеси.В двигателях с принудительным зажиганием в качестве топлива используется бензин или смесь бензина. Топливно-воздушная смесь всасывается в двигатель из карбюратора, а затем под действием искры сгорает. Двигатели с низкой степенью сжатия также могут называться (взаимозаменяемо): бензиновые, карбюраторные или искровые. Зажигание происходит автоматически на дизельных двигателях. Это сделано таким образом, что в цилиндр засасывается чистый воздух, который под действием сжатия нагревается до такой степени, что происходит автоматическое воспламенение топлива.Двигатели, работающие по такому принципу, называются дизельными двигателями.

Следующая классификация зависит от вида работ. Различают следующие двигатели:

двухтактные двигатели - рабочий ход в них соответствует каждому обороту коленчатого вала,

четырехтактные двигатели - рабочий ход соответствует двум оборотам коленчатого вала.

Следующая классификация — количество цилиндров. Мы различаем:

одноцилиндровый,

многоцилиндровый.

Однако по способу охлаждения мы делим двигатели на:

с воздушным охлаждением,

с жидкостным (обычно водяным) охлаждением.

Однако в зависимости от расположения клапанов различают:

нижний клапан,

верхний клапан.

4. Принцип действия двигателя с воспламенением от сжатия (дизель).

Четырехтактные или двухтактные двигатели с воспламенением от сжатия, также известные как дизельные двигатели, характеризуются почти на 30% меньшим расходом топлива, более дешевым использованием и высокой долговечностью. Главная их особенность в том, что в них нет свечи, вырабатывающей искру. Воспламенение топливной смеси происходит автоматически под действием высокого давления.Принцип работы такого двигателя делится на четыре такта и заключается в следующем:

1-й такт впуска - При движении поршня из верхнего максимального положения в сторону коленчатого вала в цилиндр всасывается очищенный воздух через открытый впускной клапан

2-й такт сжатия - когда поршень находится в нижнем максимальном положении, он меняет свое направление. При этом клапан подачи воздуха закрыт. Воздух сжимается до давления 3-4,5 МПа и, следовательно, нагревается до температуры 530-730°С.В конце этого такта, когда воздух полностью сжат, впрыскивается распыленное топливо, которое затем смешивается с воздухом, быстро испаряется и автоматически воспламеняется.

3.Рабочий ход - При сгорании температура и давление увеличиваются почти в три раза. Под таким высоким давлением поршень перемещается из верхнего максимального положения в нижнее максимальное положение. После этого работа выполняется, и двигатель может продолжать работать.Во время этого такта газы расширяются на весь цилиндр.

4. Такт выпуска - Заключительный этап работы двигателя заключается в открытии выпускного клапана, через который выхлопные газы выбрасываются за пределы двигателя. Поршень за это время перемещается из нижнего в верхнее максимальное положение. Когда поршень находится в верхнем положении, процесс начинает повторяться и происходит еще один такт впуска.

5. Четырехтактные двигатели с низкой степенью сжатия.

В четырехтактном карбюраторном двигателе смесь, произведенная в отдельной емкости - карбюраторе, всасывается в цилиндр во время такта впуска.Он состоит из пара и крошечных капель топлива, смешанных с воздухом. При следующем такте эта смесь сжимается, ее давление и температура увеличиваются. В конце такта сжатия между электродами свечи зажигания проскакивает электрическая искра, воспламеняющая смесь. Пламя быстро распространяется по всему объему горения, давление газа повышается до 30-50 кг/см2, при этом температура находится в пределах 1800-25000С.

Рабочий ход и такт выпуска осуществляются в карбюраторном двигателе так же, как и в дизеле.

Нагрузка на карбюраторный двигатель нормируется количеством топливно-воздушной смеси, подаваемой в цилиндр. Состав смеси, т. е. соотношение количества топлива и воздуха, практически постоянен, что необходимо для воспламенения смеси от свечи зажигания.

6. Принцип работы двухтактного двигателя с искровым зажиганием.

Двухтактный двигатель с искровым зажиганием обычно используется в мотоциклах. Иногда он также используется для привода сельскохозяйственной техники с небольшим контрактом мощности.В двухтактном двигателе полный цикл работы выполняется за два хода поршня, то есть за один оборот коленчатого вала. Это возможно, когда картер двигателя используется для предварительного сжатия топливно-воздушной смеси.

Принцип работы двигателя показан на рисунке.

1. При движении поршня двигателя от НМТ к ВМТ в герметичном картере создается вакуум. Когда поршень выставляет поршень на окно впускного окна, соединенное с впускным коллектором, воздушно-топливная смесь, образующаяся в карбюраторе, всасывается в картер.

2-й цилиндр за это время сжимает груз, засосанный во время предыдущего рабочего цикла. Это такт сжатия. Незадолго до достижения поршнем ВМТ происходит воспламенение смеси и начинается рабочий такт. Поршень, перемещаясь от ВМТ к НМТ, закрывает впускное окно и вызывает предварительное сжатие смеси в картере.

В конце такта расширения поршень сначала открывает выпускное окно, позволяя выхлопным газам выйти из цилиндра, а затем проходное окно, соединяющее цилиндр с картером.Смесь, предварительно сжатая в картере, теперь течет по проходному каналу, который занимает цилиндр двигателя и выталкивает остатки отработавших газов в выпускной канал. называли так наз. промывка цилиндра. Она заканчивается, в этот момент поршень снова двинется вверх и закроет вначале проходное окно, а затем и окно выхлопного тракта. В этот момент смесь сжимается в цилиндре. Затем в картере создается вакуум. При очередном движении поршня к ВМТ его нижняя кромка открывает окно впускного канала и смесь поступает в картер, необходимый для следующего цикла работы.

7. Принцип работы двигателей с циркулирующим поршнем.

Циркуляционный поршневой двигатель был построен Феликсом Ванкелем в 1960 году и назван в честь его фамилии. Двигатель был назван двигателем Ванкеля. Он имеет совершенно другую конструкцию, чем другие приводные агрегаты.Его большим преимуществом является снятие веса кривошипно-шатунной системы, что делает двигатель намного легче. Треугольный поршень совершает планетарное движение относительно корпуса двигателя и может быть разделен на три рабочие камеры.

За один полный оборот поршня в каждой рабочей камере совершается четыре изменения объема, что соответствует четырем тактам четырехтактного двигателя.

Каждое из рабочих пространств поочередно соединено с входным каналом, обеспечивающим процесс всасывания смеси. По мере того, как поршень продолжает движение, объем камеры уменьшается, сжимая смесь. В конце сжатия смесь воспламеняется от электрической искры. Сжатые газы давят на поршень, заставляя его вращаться.Емкость камеры последовательно увеличивается, и когда поршень открывает окно выпускного окна, сжатые газы выходят в атмосферу. После открытия впускного канала в камеру поступает свежая смесь, и цикл повторяется заново.

8. Сравнение двигателей внутреннего сгорания, их применение

Дизельные двигатели более экономичны, чем двигатели низкого давления. Разовый расход топлива в двигателях с низкой степенью сжатия равен примерно 250 Г/кмч, в то время как в дизелях расходуется всего ок.200G/кмч. Что касается наших условий, то мы также должны учитывать разницу в ценах на топливо. К недостаткам особенностей дизельного двигателя относятся затрудненный запуск, необходимость использования точного и очень дорогого оборудования для впрыска, более прочная и тяжелая конструкция и меньшая мощность, которую двигатель может получить при том же рабочем объеме. Все это способствовало тому, что двигатели с воспламенением от сжатия все шире и чаще широко применялись в сельскохозяйственных тракторах и большегрузных автомобилях, с насосами, компрессорами, комбайнами и везде, где расход топлива имеет огромное влияние на цену эксплуатации.Четырехтактные карбюраторные двигатели в настоящее время используются для привода легковых автомобилей, грузовиков, электрогенераторов и т. д. Двухтактные двигатели, к сожалению, менее экономичны, чем четырехтактные, и речь идет о 400 г топлива на 1 км час. Бензиновые двухтактные карбюраторные двигатели с картерной загрузкой применяются в мопедах, мотоциклах, массовых автомобилях, а также для запуска крупных дизелей, ввиду малой мощности и малого расхода топлива в час.Самыми большими преимуществами двухтактных двигателей низкого давления являются, прежде всего, низкая цена и несложная эксплуатация.

9. Детали двигателя.

Двигатель внутреннего сгорания, кроме основных частей, имеет также дополнительные системы, гарантирующие его правильную работу. Общее описание этих систем приведено в п.2.

Блок двигателя - конструктивный элемент, составляющий ядро, основание, соединяющий остальные части воедино и воспринимающий нагрузки, действующие на детали машины.

Головка блока цилиндров — часть двигателя внутреннего сгорания, закрывающая внутреннюю часть одного или нескольких цилиндров сверху и соединенная с блоком цилиндров шпильками. Головки цилиндров изготавливаются в виде чугунных отливок или из алюминиевых сплавов. Детали конструкции головки блока цилиндров зависят от типа двигателя, способа охлаждения, системы газораспределения и привода, формы камер сгорания и многих других факторов.

Коленчатый вал - вращающаяся часть поршневого двигателя, к которой крепятся шатуны, передающие энергию возвратно-поступательного движения поршней.Шатуны вала с числом, равным числу цилиндров (рядное и оппозитное расположение), половине числа цилиндров (v-образное расположение) или числу рядов цилиндров (звездообразное расположение), смещены параллельно оси вала на расстояние равной половине хода поршня. Крутящий момент снимается с коленчатого вала для привода колес автомобиля, воздушного винта самолета и т. д.

Система газораспределения представляет собой комплекс устройств, используемых для управления наполнением и опорожнением цилиндров сгорания. В двигателях внутреннего сгорания используются фазы газораспределения: поршневая (в двухтактных двигателях), золотниковая (когда-то популярная, сейчас почти полностью устарела) и газораспределительная (весьма распространенная).Фазы газораспределения двигателя можно разделить на: низкоклапанные, верхнеклапанные и смешанные (применяются очень редко, впускные клапаны расположены в головке, выпускные — в блоке цилиндров). Очень распространенный механизм газораспределения с верхним расположением клапанов состоит из распределительного вала, приводимого в движение от коленчатого вала двигателя цепью или зубчатым ремнем, клапанов и толкателей, штоков толкателей и рычагов, обеспечивающих передачу движения от кулачков к клапанам. В настоящее время ведутся работы по использованию электромагнитного срабатывания клапана.

Карбюратор, иначе карбюратор, - совокупность машин и механизмов в двигателе внутреннего сгорания с искровым зажиганием, основной задачей которых является получение, регулирование состава и дозирование определенной топливно-воздушной смеси в зависимости от нагрузки и оборотов двигателя.

По направлению потока воздуха различают карбюраторы:

1) дождевой (нижний всасывание), очень распространен, поток воздуха сверху вниз,

2) верхний всасывание, поток воздуха снизу вверх,

3) горизонтальный (боковой всасывание), поток воздуха горизонтальный.

В последнее время часто можно встретить т.н. инжекторные карбюраторы, являющиеся промежуточным решением между карбюратором и впрыском топлива.

Впрыск топлива - система питания двигателя внутреннего сгорания, которая подает определенную, строго сжатую порцию жидкого топлива непосредственно в цилиндр (непосредственный впрыск), во всасывающий канал каждого цилиндра (многоточечный непрямой впрыск) или во впускной коллектор (одноточечный непрямой впрыск). Незаменим в дизельных и газотурбинных двигателях, очень часто используется в искровом зажигании.

.90 000 Меньше выбросов от транспорта в городах 90 001

Как сократить выбросы парниковых газов и других загрязнителей воздуха от транспорта? Какие нормативные акты позволят создать в городах хорошо функционирующие экологически чистые транспортные зоны? Ответы на эти вопросы искали участники семинара «Меньше выбросов от транспорта в городах», который состоялся 4 июля 2018 года в Варшаве.

В то время, когда мы внедряем в Польше важные программы и правила в области улучшения качества воздуха или развития электромобильности, нам необходимо широкое общественное обсуждение решений в этой области.Мы должны решить задачу обеспечения того, чтобы граждане могли удовлетворять свои транспортные потребности таким образом, чтобы это наносило как можно меньший вред их здоровью и окружающей среде. Мы также должны подумать о том, какую роль в обсуждении и во внедрении новых решений могут сыграть неправительственные организации, действующие на местном уровне.

Транспорт отвечает за почти четверть выбросов парниковых газов в Европе и является основной причиной загрязнения воздуха в городах. К 2050 году выбросы парниковых газов в транспортном секторе должны сократиться не менее чем на 60% по сравнению с уровнем 1990 года.и далее сводиться к нулевой консистенции.

На городской транспорт приходится 23% выбросов парниковых газов в ЕС, выбросы парниковых газов и большая доля загрязнителей воздуха. Поэтому городские власти будут играть ключевую роль в снижении выбросов в этом секторе, в том числе путем поощрения использования транспортных средств с низким уровнем выбросов, городских велосипедов и совместного использования автомобилей. Они могут изменить поведение жителей, развивая и улучшая общественный транспорт, интегрированные билеты, системы «паркуйся и катайся» и интеллектуальные транспортные системы.Вам необходимо управление мобильностью и интегрированное планирование, включая сети мобильности, политику парковки, городское планирование, планирование устойчивой мобильности… Существует множество решений, но городские власти должны быть готовы их использовать. В столице чиновники в сотрудничестве с жителями разработали неплохую варшавскую политику мобильности, но советники не хотели ее принимать.

Автомобильное движение в городах стоит ограничивать и регулировать по многим причинам. По сравнению с ЕС мы занимаем четвертое место по статистике смертности на дорогах на миллион жителей — в 2017 году у нас было 75 смертей на дорогах, а в среднем по ЕС — 49.Выхлопные газы дизельных автомобилей повышают риск развития рака, заболеваний сердечно-сосудистой, дыхательной и нервной систем. Европа во многом создала проблему по собственному желанию, поддержав развитие дизельных автомобилей. Сейчас ими пользуются аж 53% европейцев (остальные 47% — бензином), в то время как в США только 3% граждан ездят на дизельных автомобилях. Более чистый транспорт приносит пользу не только здоровью, но и экономике. Например, датчане подсчитали, что если число людей, пользующихся велосипедами, увеличится на 10%, количество дней отпуска по болезни сократится на 267 000 в год, а экономика выиграет 152 000 евро.

Между тем впереди много вызовов, таких как необходимость совершенствования недавно принятых правил создания экологически чистых транспортных зон, чтобы города могли реально извлечь выгоду из этих положений. В Законе от 11 января 2018 г. об электромобилях и альтернативных видах топлива (Вестник законов от 2018 г., ст. 317) к чистым транспортным зонам применяются лишь несколько параграфов:

  • Арт. 39, 40 (правила создания зон),
  • арт. 48 (новое правонарушение в Кодексе о мелких правонарушениях),
  • арт.54 пункт 3 (право коммунальной охраны контролировать соблюдение ограничений движения).

Правила неточны и в то же время слишком строги. Цель акта — популяризация электромобилей и водородных автомобилей, которых пока нет на наших улицах, а не реальное улучшение качества воздуха в городах. Теоретически муниципалитеты могут устанавливать исключения из запретов, но нет никаких критериев, которыми они могли бы руководствоваться. Шансы на то, что зона будет создана на основе этих правил, невелики.

Вместе с тем, подписи президента ожидает поправка - закон от 6 июня 2018 года о внесении изменений в закон о биокомпонентах и ​​жидком биотопливе и некоторые другие акты, которым вносятся изменения в закон об электромобильности, в том числе в сфере экологически чистого транспорта зоны. Совершенно изменены предпосылки создания зон - прежние были неясны, но и новые тоже не логичны. Зоны могут быть созданы только в муниципалитетах с населением более 100 000 человек, хотя в небольших городах также есть районы плотной застройки центра города.Где логика, если Калиш (102 000) сможет создать такую ​​зону, а Грудзёндз (96 000) не сможет?

Поправка вводит возможность взимания платы, выпавшей из закона об электромобильности, но хотя создание такой возможности необходимо, правила оставляют желать лучшего. Плата не может превышать 2,50 злотых в час и может взиматься только с 9:00 до 17:00. Закон излишне ограничивает свободу муниципалитетов в принятии решений о введении сборов, в том числе об их размере.Это также не позволяет их дифференцировать. Влияние можно использовать для обозначения зоны, но не для ее поддержания. Период, в течение которого могут взиматься дорожные сборы, - три года - недостаточен для замены автомобилей с низким уровнем выбросов, а полный запрет на въезд в центр города может быть слишком строгим.

Поэтому надо обращаться в органы, в т.ч. о:

  • удаление или существенное продление срока платежа,
  • создание возможности дифференциации суммы сборов в зависимости от коэффициента излучения или возраста транспортного средства,
  • с указанием оснований для создания дополнительных исключений коммунами (с учетом норм выбросов),
  • о введении системы маркировки транспортных средств в соответствии с нормами выбросов, которым они соответствуют.

Презентации семинара:

«Мобильность с низким уровнем выбросов в городах — общий взгляд», Анджей Кассенберг, Институт устойчивого развития

«Отказ от дизельной техники в свете аргументов общественного здравоохранения», Тадеуш Енджейчик, доктор медицинских наук, Гданьский медицинский университет

«Чистые транспортные зоны», Милош Якубовский, Фонд Фрэнка Болда

.90 000 Широкий выбор моделей Mercedes-Benz для отдыха на выставке трейлеров в Дюссельдорфе

Именно Sprinter является моделью Mercedes-Benz, наиболее активно модифицируемой производителями кузовов. Он очень популярен не только в Европе. В Соединенных Штатах, например, Mercedes-Benz в настоящее время поставляет ведущим компаниям по переоборудованию кузовов около 4000 автодомов в год. Некоторые из них даже экспортируют свои автомобили в Китай.


Новый Sprinter в виде модели автодома в поперечном сечении

Изюминкой стенда Mercedes-Benz в Caravan Salon является полностью функциональная модель автодома в поперечном сечении на базе нового Sprinter с поднятой крышей.Правая сторона его тела почти полностью обнажена. Эксклюзивный интерьер подчеркивает блестящая белая мебель и сиденья, обитые натуральной кожей «Мерседес-Бенц» — тоже белого цвета. Это сочетание напоминает каюты элегантных яхт.


Непревзойденные системы безопасности в новом Sprinter

Новый Sprinter обеспечивает уровень безопасности, невиданный ранее в фургонах. Работа пяти новых систем помощи — Side Wind Assist, Collision Prevention Assist, Blind Spot Assistant, Lane Assistant и High Beam Assist — настроена на безопасные и комфортные пешие походы.


Лучший в своем классе расход топлива: всего 6,3 л/100 км

Sprinter также является отличным автодомом по другой причине. Это первая модель в своем классе, которая предлагается с полной линейкой двигателей Euro VI, которые выбрасывают значительно меньше вредных веществ и в то же время потребляют еще меньше топлива. Самой экономичной версии требуется всего 6,3 л/100 км — рекорд в классе.

Мощность дизелей осталась неизменной.В их ассортимент входят двигатели объемом 2,15 л мощностью от 70 кВт (95 л.с.) до 120 кВт (163 л.с.), а также 3,0-литровый двигатель V6 CDI мощностью 140 кВт (190 л.с.) и 440 Нм максимального крутящего момента. Мощность привода передается на колеса через 6-ступенчатую механическую коробку передач Eco Gear или 7-ступенчатую автоматическую коробку передач 7G-TRONIC PLUS. Последний — недоступный ни в одном другом транспортном средстве — впервые работает с функцией Eco start/stop и особенно популярен среди покупателей автодомов.

Обновленный кузов и салон

Лицо нового Sprinter соответствует современным дизайнерским тенденциям Mercedes-Benz – решетка радиатора стала более вертикальной, фары более выразительными, профиль капота поднят выше, характерная форма бампера напоминает тот, что встречается у внедорожников.Кабина Sprinter, которую многие считают моделью, также была модернизирована.


Viano Fun и Viano Marco Polo: приятный отдых

Viano Fun и Marco Polo — это другие модели помимо Sprinter, которые гармонично сочетают повседневную функциональность с рекреационным характером. Viano Fun предлагается в двух вариантах длины, с кабиной от пяти до семи мест. Кресла, расположенные вокруг откидного стола, можно передвигать благодаря системе рельсов или легко и быстро снимать, а задний диван в сложенном виде превращается в удобную кровать.Viano Marco Polo
— это настоящий дом на колесах, оборудованный плитой, холодильником и шкафом для одежды. Продуманные, подвижные задние сиденья — на самом деле два отдельных сиденья — по запросу при помощи электропривода складываются в лежачее положение. Комфорт при езде в дальних поездках повышают надувные боковые подушки безопасности, обеспечивающие дополнительную поддержку.

Специальную модель Viano Marco Polo Edition отличает исключительно богатое оснащение, включающее: автоматическую коробку передач, биксеноновые фары, кондиционер Tempmatic, 17-дюймовые легкосплавные диски, навигационную систему Audio 50 APS, окраску «металлик» и воздушный стояночный обогреватель.

С сентября этого года. Также предлагается версия Viano Fun Edition, похожая на версию Viano Marco Polo Edition. Его интерьер обставлен пятью креслами, которые можно превратить в три спальных места. Список опций включает в себя, среди прочего подъемная крыша и кровать на крыше.


От Viano до Actros и Zetros - платформы для автофургонов

Широкий ассортимент фургонов и грузовиков Mercedes-Benz открывает почти неограниченные возможности в производстве туристических автомобилей всех типов.Когда дело доходит до автомобиля высшего класса, производители выбирают Actros. Для экспедиционных машин, работающих в условиях сложной местности, подходят платформы легендарных Unimog или Zetros с кабиной за двигателем. Независимо от того, выберете ли вы Sprinter, Viano или другую модель — трехконечная звезда означает, что вы хорошо подготовились к отпуску на колесах.

.

Стоит ли покупать: Saab 9-3 (2002-2012)

Хотя по престижности он не уступал своим соперникам на Рейне, но был для них интересной альтернативой в премиальном сегменте. Безусловно, если бы не финансовые проблемы, банкротство и последующие невзгоды, связанные со сменой собственников, сегодня Saab 9-3 тоже имел бы толпы своих поклонников. Так что у них остался только вторичный рынок.

Смена поколения модели в 2002 году принесла с собой одну очень важную новинку. Ну а более ранний кузов хэтчбек (или, если хотите, - фастбэк) был заменен более классическим четырехдверным кузовом (SportSedan).Благодаря этому шагу 9-3 второго поколения должен был стать более элегантным автомобилем, который также будет использоваться другой группой покупателей, чем его предшественники. Через год после выхода седана на рынок к нему присоединилась версия с открытым верхом, а в 2005 году модельный ряд дополнил универсал, получивший название SportCombi.

В 2008 году автомобиль подвергся фейслифтингу, в ходе которого стилистические изменения коснулись как кузова, так и салона модели, и с тех пор в предложении появились полноприводные (XWD) версии.В этом году в ознаменование модели 900 Turbo была запущена ограниченная серия из 2000 экземпляров версии 9-3 Turbo X. Через год на автосалоне в Женеве был представлен внедорожник 9-3X, построенный на базе была представлена ​​универсальная версия.

Также стоит отметить, что 9-3 создавался на базе той же платформы (GM Epsilon I), что и тогдашний Opel Vectra, в нем также использовались многие современные технологии, которые предлагались в его немецком двоюродном брате, хотя были и более индивидуальные решения.Среди таких элементов следует отметить многорычажную заднюю подвеску, полный привод (Haldex 4-го поколения) и симпатичные бензиновые турбированные агрегаты, хотя в данном случае эти мнения были несколько омрачены немалыми недостатками турбин.

Двигатели с турбонаддувом, как бензиновые, так и дизельные, являются одной из отличительных черт Saab. Когда он поступил в продажу, было предложено в общей сложности четыре версии двигателя, все, конечно же, с турбонаддувом.Все бензиновые двигатели имели объем два литра, но для их различения использовалась разная маркировка. Итак, базовый двигатель 1,8т развивал 150 л.с., версия 2,0т – 175 л.с., а 2,0Т – 210 л.с. У сторонников дизеля на тот момент не было выбора, им пришлось остановить свой выбор на 2,2-литровом агрегате (TiD) мощностью 125 л.с. под капотом.

Альтернатива им появилась в 2005 году, когда на смену немного устаревшему мотору 2.2 TiD пришли 1,9-литровые дизельные агрегаты Fiat мощностью 120 и 150 л.с.Позже к ним присоединилась еще одна версия того же двигателя мощностью 180 л.с. В 2004 году предложение бензиновых двигателей было расширено за счет единственного безнаддувного двигателя объемом 1,8 литра и мощностью 122 л.с. Через год появился двигатель 2.8T V6 мощностью 230 или 250 л.с., который с 2008 г. также был доступен в самом мощном варианте на 280 л.с. Хотя они не были популярны на польском рынке, следует также упомянуть две версии Saab 9-3, работающие на биоэтаноле E85 - 1,8 т и 2,0 т BioPower мощностью 175 и 200 л.с. соответственно.

Выбор двигателя зависит, конечно, от наших предпочтений и ожиданий, но если мы не хотим жаловаться на слишком малую мощность и плохую маневренность, давайте откажемся от атмосферного агрегата и 2,2-литрового дизеля. У вышеупомянутого бензинового мотора ремень ГРМ, у остальных цепь, которая, впрочем, тоже требует замены примерно через 200 тысяч километров. км (возможность его растяжения, о чем будет свидетельствовать шум из моторного отсека). В более мощных версиях также есть риск заклинивания лопаток ротора турбокомпрессора – возможная замена здесь может обойтись достаточно дорого, стоит подумать о регенерации турбины.К сожалению, из строя выходят и другие элементы агрегатов двигателя, в турбодизелях надо быть осторожнее с деликатной системой впрыска и двухмассовым маховиком, поломка может коснуться и системы зажигания. При выборе бензинового варианта нужно учитывать, что расход топлива не маленький.

Saab 9-3 ненавидит неровные поверхности, побочным эффектом которых, к сожалению, являются проблемы с нестабильной подвеской. Дефекты могут коснуться как системы подвески переднего моста – передние поперечные рычаги, шкворни, подшипники стоек передней и задней подвески, так и поперечные рычаги, стойки стабилизатора, здесь также необходимо будет регулярно проверять схождение.

Еще одним недостатком Saab9-3 второго поколения является также довольно плохая отделка салона, особенно если говорить об этой модели в контексте премиум-сегмента, хотя в то же время нельзя отказать в интересном стиле. Некоторые пластики определенно слишком твердые, и в то же время неустойчивые к царапинам. После продолжительной эксплуатации и большего пробега вы можете услышать различные скрипы, но найти аккуратный вариант может быть не так просто. Некоторые пользователи также жалуются на часто появляющиеся ошибочные сообщения, выдаваемые бортовым компьютером.

К недостаткам этой модели можно отнести плохую доступность некоторых запчастей, а покупка оригинальных замен будет для нас тяжким бременем. К счастью, это относится не ко всем компонентам. Усложнение конструкции, в свою очередь, означает, что некоторые виды ремонта невозможно будет провести в менее оснащенных мастерских.

.90 000 Sygnis среди жемчужин автомобильной промышленности! 3D-печать в гостях на выставке Национального музея технологий

Элегантный CWS-T1, культовый Fiat 508, легендарная Syrena Sport, знаменитый De Dion Bouton или единственный в мире мотоцикл от Choiński – это лишь некоторые из почти сорока моделей автомобилей и мотоциклов, представленных на выставке в Ратуша Дворца культуры и науки в Варшаве. Поверьте, 3D-печать, которую смело можно назвать технологией будущего, может иметь много общего со старинными автомобилями и образованием!

Выставка, которая продлится до 25 сентября, станет настоящим праздником не только для автолюбителей.Perły Motoryzacji в своем повествовательном слое представляет собой сквозной рассказ об истории автомобилестроения в Польше. История, которая начинается с появления первых автомобилей и мотоциклов в Польше. Примеров множество — от вышеупомянутого французского De Dion Bouton до смелых и уникальных польских моделей, таких как мотоцикл Choiński или CWS-T1 — первый польский легковой автомобиль, выпускавшийся серийно после восстановления независимости в 1918 год.Красивый Syrena Sport , олицетворяющий несбывшуюся мечту поляков о большой автомобилизации, вероятно, также вызовет энтузиазм у посетителей выставки. Как и Ford T — легендарный автомобиль: 19 лет производства, 15 миллионов проданных единиц! Автомобиль был моторизован США и собирался в Польше в 1920-1925 годах. Также можно полюбоваться британским Humber начала 20 века, который больше похож на элегантную мотоколяску, чем на автомобиль.На выставке будут представлены и более современные, но уже исторические модели польских автомобилей: Smyk, Mikrus, Meduza, Beskid, Warszawa M-20 , не говоря уже о культовых Fiat 125p, Polonaise Analogu или Syrena 100 . Их будут сопровождать великолепные модели мотоциклов в версии с корзиной — например, британский Ariel или Junak M10 и без корзины — как польский Ryś, SHL Gazela или культовый Osa.

.90 000 «Жемчужины автомобильной промышленности Польши — прототипы и классика, легенды и факты» — выставка Национального музея техники в Варшаве. - Национальный музей технологий

Элегантный CWS-T1, культовый Fiat 508, легендарная Syrena Sport, знаменитый De Dion Bouton или единственный в мире мотоцикл от Choiński – это лишь некоторые из почти сорока моделей автомобилей и мотоциклов, представленных на выставке в Ратуша Дворца культуры и науки в Варшаве. Выставка стартует 1 июля и продлится до 25 сентября.

Это настоящая находка не только для автолюбителей. Выставка в своем повествовательном слое представляет собой сквозной рассказ об истории автомобилестроения в Польше. История, которая начинается с появления первых автомобилей и мотоциклов в Польше - как вышеупомянутый французский De Dion Bouton , через смелые и уникальные польские конструкции - как мотоцикла Choiński или CWS-T1 - первая польская массовая - легковой автомобиль, произведенный после восстановления независимости в 1918 году.Красивый Syrena Sport , олицетворяющий несбывшуюся мечту поляков о большой автомобилизации, вероятно, также вызовет энтузиазм у посетителей выставки. Как и Ford T — легендарный автомобиль: 19 лет производства, 15 миллионов проданных единиц! Автомобиль был моторизован США и собирался в Польше в 1920-1925 годах. Также вызовет восхищение британский Humber начала 20 века, который больше похож на элегантную моторную коляску, чем на автомобиль.На выставке будут представлены и более современные, но уже исторические модели польских автомобилей: Smyk, Mikrus, Meduza, Beskid, Warszawa M-20 , не говоря уже о культовых Fiat 125p, Polonaise Analogu или Syrena 100 . Их будут сопровождать великолепные модели мотоциклов в версии с корзиной — например, британский Ariel или Junak M10 и без корзины — как польский Ryś, SHL Gazela или культовый Osa.

На выставке также найдется место для юмора и хорошей шутки – ведь об автомобилестроении нужно говорить не только всерьез.Представленная на выставке модель Buggy Quad Fiat 126p - являющаяся индивидуальной модификацией популярного "малыша", пожарная машина Żuk с гордым названием Ramesses в экспортном варианте для Египта, либо вид Fiat 126p – который посетители смогут упаковать самостоятельно для знаменитых когда-то «отпусков в Болгарии» – наверняка вызовет много улыбок на лицах посетителей выставки. Аттракционом для детей, несомненно, станет возможность сфотографироваться на военном мотоцикле К-750 , в народе известном как «Каська», или завести огромный 4-х тактный дизель «Мерседес».

Всего на выставке будет представлено около 40 автомобилей и мотоциклов. Выставку будут сопровождать кураторские экскурсии. Все описания собранных экспонатов будут доступны на польском и английском языках. Организатором этого автомобильного мероприятия является Национальный музей технологий в Варшаве , из которого поступает подавляющее большинство коллекций; остальные экспонаты получены для выставки от частных коллекционеров. Выставку можно посмотреть без выходных, с с 9 до 20 в Ратуше Дворца культуры и науки.

Медиа-патронаты выставки: Программа III Польского Радио, WP.PL, WawaLove.

.90 000 Mercedes-Benz на ярмарке караванов в Дюссельдорфе

Mercedes-Benz представляет свои модели для отдыха Viano Marco Polo Edition, Viano Fun Edition и новый Sprinter на выставке Caravan Salon 2013 в Дюссельдорфе. Кроме того, автомобили со звездой можно найти на многих стендах других производителей.

Новинки от Mercedes на выставке Caravan Salon

Во время выставки автодомов Caravan Salon 2013 в Дюссельдорфе (31 августа - 8 сентября 2013 г.), Mercedes-Benz покажет новый Sprinter. Именно модель марки чаще всего модифицируют производители кузовов. В Соединенных Штатах, например, Mercedes-Benz в настоящее время поставляет ведущим компаниям по переоборудованию кузовов около 4000 автодомов в год.

Изюминкой стенда Mercedes-Benz в Caravan Salon является полностью функциональная модель автодома в поперечном сечении на базе нового Sprinter с высокой крышей. Правая сторона его тела почти полностью обнажена. Эксклюзивный дизайн интерьера подчеркивает блестящая белая мебель и кресла, обтянутые натуральной кожей, также белого цвета.

Sprinter можно использовать в качестве автодома благодаря высокому уровню безопасности и экологичности. Это первая модель в своем классе, которая предлагается с полным набором двигателей Евро-6, выбрасывающих значительно меньше вредных веществ. Мощность дизельных агрегатов осталась неизменной. В их ассортимент входят двигатели объемом 2,15 л мощностью от 70 кВт (95 л.с.) до 120 кВт (163 л.с.), а также 3,0-литровый двигатель V6 CDI мощностью 140 кВт (190 л.с.) и 440 Нм максимального крутящего момента. Мощность привода передается на колеса через 6-ступенчатую механическую коробку передач Eco Gear или 7-ступенчатую автоматическую коробку передач 7G-TRONIC PLUS.Последний — недоступный ни в одном другом транспортном средстве — впервые работает с функцией Eco start/stop и особенно популярен среди покупателей автодомов.

Viano Fun и Viano Marco Polo

Viano Fun и Marco Polo — другие модели, наряду со Sprinter, сочетающие повседневную функциональность с рекреационным характером. Viano Fun предлагается в двух вариантах длины, с кабиной от пяти до семи мест. Кресла, расположенные вокруг откидного стола, можно передвигать благодаря системе рельсов или легко и быстро снимать, а задний диван в сложенном виде превращается в удобную кровать.

Viano Marco Polo – это настоящий дом на колесах, оборудованный плитой, холодильником и шкафом для одежды. Продуманные, подвижные задние сиденья — на самом деле два отдельных сиденья — по запросу при помощи электропривода складываются в лежачее положение. Комфорт при езде в дальних поездках повышают надувные боковые подушки безопасности, обеспечивающие дополнительную поддержку.

С сентября 2013 года Mercedes-Benz также предлагает Viano Fun Edition, аналогичный Viano Marco Polo Edition. Его интерьер обставлен пятью креслами, которые можно превратить в три спальных места.Список опций включает в себя, среди прочего подъемная крыша и кровать на крыше.

.

Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)