В каких электрических аппаратах применяют трансформаторное масло


Применение трансформаторного масла на производстве и в быту

В каком же высоковольтном оборудовании используется масло? Силовые трансформаторы, высоковольтные вводы, измерительные трансформаторы тока и напряжения, масляные выключатели.

Кроме норм и объемов испытаний электрооборудования, где прописаны допустимые значения различных марок трансформаторных масел при проведении различных видов испытаний, существуют и другие нормативные акты, определяющие понятия и термины в этой теме. Например, руководящие указания по эксплуатации трансформаторных масел. Согласно этого документа цикл жизни масла состоит из нескольких этапов, согласно которых можно описать возможные состояния данного материала:

  • Свежее
  • После осушки и очистки
  • Эксплуатационное
  • Отработанное
  • Восстановленное
  • Регенерированное

Сначала в бочках на объект поступает свежее масло, затем его при необходимости чистят, сушат, доводя показатели до установленных в нормах на испытания чистых масел.

Масло, залитое в электрооборудование называется эксплуатационным, оно должно соответствовать нормам на эксплуатационное масло.

По истечении определенного срока показатели масла ухудшаются и его сливают из оборудования в специальные емкости, такое масло является отработанным.

Далее масло восстанавливают или регенерируют. Возвращают допустимые характеристики. Различие в том, что регенерированное масло возвращают к характеристикам свежего масла. Если очистка не удается, то отработанное масло сдается на нефтебазу.

О назначении трансформаторного масла очевидно говорит его название, хотя для разных марок масла имеются свои особенности. Откроем пару ГОСТов и инструкций и посмотрим, что о применении пишут создатели.

  • ГК, ВГ, СА - применяется в электрооборудовании всех классов напряжения
  • Nytro - маслонаполненное оборудование: силовые трансформаторы, распределительные трансформаторы, выпрямители, автоматические выключатели, распредустройства
  • Т 1500 - силовые трансформаторы, реакторы, маслонаполненные вводы, измерительные трансформаторы, масляные выключатели всех классов напряжения. Если на конце буква У, то напряжение до 330 кВ включительно
  • ТКп - силовые трансформаторы, масляные выключатели до 500 кВ
  • ТСп - ЭО до 220 кВ
  • Nytro 10X - силовые трансформаторы всех классов напряжения
  • Nytro 11GX, Technol 2000 - силовые трансформаторы всех классов напряжения, ТТ серии ТФЗМ до 220 кВ

Также масло применяется в аппаратах для испытания диэлектриков, испытательных трансформаторов.

Где лучше не использовать трансформаторную отработку?

Если послушать отдельных слесарей и мастеров, которые постоянно ездят на ремонты трансформаторов - то можно услышать, что масло хорошо подходит для дизельных машин. Также можно услышать истории про сумасшедших, которые добавляли это масло в салат, а потом лежали в больнице. Что же из этого правда, а что пьяная небылица?

Что касается применения трансформаторного масла в быту, то в данном вопросе речь идет скорее всего про отработанное масло, или как его еще называют отработку.

Если масло досталось, а что делать с ним не приходит в голову, то могу привести список возможных вариантов, о которых люди пишут на форумах (проверять я их естественно не рекомендую). Вся эта народная “медицина” не вызывает доверия.

  • использование вместо солярки в тракторе, старом корче (но стоит обратить внимание на порчу резиновых уплотнений)
  • смешать с турбинным маслом и использовать в амортизаторах (данная схема применялась во времена дефицита в старых моделях авто)
  • применение в качестве аналога олифы для пропитки деревянных поверхностей (другой вопрос в пожароопасности полученной поверхности)
  • в качестве среды для замкнутого цикла отопления загородного дома вместо мазута

Вместе с тем стоит помнить, что трансформаторное масло всё таки предназначено для гашения дуги, а не для смазки. Имеет слабые смазывающие свойства, разъедает резину, высокая впитываемость. А в отработанном содержатся вредные вещества, да и пары его вредны для здоровья.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Защита трансформатора и цепей

Электрооборудование и цепи на подстанции должны быть защищены, чтобы ограничить повреждения из-за аномальных токов и перенапряжений.

Все оборудование, установленное в системе электроснабжения, имеет стандартные характеристики кратковременного выдерживаемого тока и кратковременного напряжения промышленной частоты. Роль защит заключается в том, чтобы гарантировать, что эти пределы устойчивости никогда не могут быть превышены, поэтому устранение неисправностей происходит как можно быстрее.

В дополнение к этому первому требованию система защиты должна быть избирательной. Селективность означает, что любая неисправность должна устраняться ближайшим к неисправности устройством прерывания тока (автоматический выключатель или предохранители), даже если неисправность обнаруживается другими средствами защиты, связанными с другими устройствами прерывания.

В качестве примера короткого замыкания, происходящего на вторичной стороне силового трансформатора, сработать должен только автоматический выключатель, установленный на вторичной обмотке.Автоматический выключатель, установленный на первичной стороне, должен оставаться замкнутым. Для трансформатора, защищенного предохранителями среднего напряжения, предохранители не должны перегорать.

Обычно это два основных устройства, способных отключать токи короткого замыкания, автоматические выключатели и предохранители:

  • Автоматические выключатели должны быть связаны с реле защиты, имеющим три основные функции:
    • Измерение токов
    • Обнаружение неисправностей
    • Выдача команды отключения на выключатель
  • Предохранители перегорают при определенных условиях неисправности.

Защита трансформатора

Напряжения, создаваемые поставкой

Два типа перенапряжения могут вызвать перегрузку и даже выход из строя трансформатора:

  • Перенапряжение молнии из-за удара молнии, падающего на воздушную линию или рядом с ней, питающую установку, на которой установлен трансформатор
  • Коммутационные напряжения, возникающие, например, при размыкании автоматического выключателя или выключателя нагрузки.

В зависимости от области применения может потребоваться защита от этих двух типов скачков напряжения, которая часто обеспечивается с помощью ограничителей перенапряжения Z n O, предпочтительно подключенных к высоковольтному вводу трансформатора.

Напряжения от нагрузки

Перегрузка трансформатора всегда происходит из-за увеличения полной потребляемой мощности (кВА) установки. Это увеличение спроса может быть следствием постепенного увеличения нагрузки или расширения самой установки. Следствием любой перегрузки является повышение температуры масла и обмоток трансформатора с сокращением срока его службы.

Защита трансформатора от перегрузок осуществляется специальной защитой, обычно называемой тепловым реле перегрузки.Этот тип защиты имитирует температуру обмоток трансформатора. Моделирование основано на измерении силы тока и тепловой постоянной времени трансформатора. Некоторые реле могут учитывать влияние гармоник тока из-за нелинейных нагрузок, таких как выпрямители, компьютеры, частотно-регулируемые приводы и т. Д. Этот тип реле также может оценивать время, оставшееся до срабатывания отключения. порядок и время задержки перед повторным включением трансформатора.

Кроме того, маслонаполненные трансформаторы оснащены термостатами, контролирующими температуру масла.

В сухих трансформаторах используются тепловые датчики, встроенные в самую горячую часть изоляции обмоток.

Каждое из этих устройств (тепловое реле, термостат, тепловые датчики) обычно обеспечивает два уровня обнаружения:

  • Низкий уровень, используемый для подачи сигнала тревоги для информирования обслуживающего персонала,
  • Высокий уровень обесточивания трансформатора.

Внутренние неисправности маслонаполненных трансформаторов

В масляных трансформаторах внутренние неисправности можно классифицировать следующим образом:

  • Неисправности, приводящие к образованию газов, в основном:
    • Микродуги, возникающие из-за начальных повреждений изоляции обмоток
    • Медленное разрушение изоляционных материалов
    • Между витками короткое замыкание
  • Неисправности, генерирующие внутреннее избыточное давление при одновременном высоком уровне сверхтоков в линии:
    • Короткое замыкание фазы на землю
    • Междуфазное короткое замыкание.

Эти неисправности могут быть следствием внешнего удара молнии или перенапряжения.

В зависимости от типа трансформатора существуют два типа устройств, способных обнаруживать внутренние неисправности масляного трансформатора.

  • Buchholz , предназначенный для трансформаторов, оборудованных расширителем дыхания (см. рис. B16a).
Бухгольц устанавливается на трубе, соединяющей бак трансформатора с расширителем (см. Рис. B16b). Он улавливает медленные выбросы газов и обнаруживает обратный поток масла из-за внутреннего избыточного давления

Рис. B16 - Дыхательный трансформатор с защитой Buchholz

  • [a] Принцип действия

  • [b] Трансформатор с расширителем

  • DGPT (обнаружение газа, давления и температуры, см. рис. B18) для встроенных заполненных трансформаторов (см. рис. B17). Этот тип трансформатора выпускается до 10 МВА. DGPT как бухгольц обнаруживает выбросы газов и внутреннее избыточное давление. Кроме того, он контролирует температуру масла.

Рис. B17 - Трансформатор со встроенным заполнением

Рис. B18 - Реле защиты DGPT (обнаружение газа, давления и температуры) для встроенных заполненных трансформаторов

  • [a] Реле защиты трансформатора (DGPT)

  • [b] Контакты ДГПТ (крышка снята)

Что касается контроля газа и температуры, Бухгольц и DGPT обеспечивают два уровня обнаружения:

  • Низкий уровень, используемый для подачи сигнала тревоги для информирования обслуживающего персонала,
  • Высокий уровень для отключения коммутационного устройства, установленного на первичной стороне трансформатора (автоматический выключатель или выключатель нагрузки, связанный с предохранителями).

Кроме того, как Buchholz, так и DGPT подходят для обнаружения утечек масла.

Перегрузки и внутренние неисправности в сухих трансформаторах

(см. рис. B19 и рис. B20)

Сухие трансформаторы защищены от перегрева из-за возможных перегрузок на выходе с помощью специального реле, контролирующего термодатчики, встроенные в обмотки трансформатора (см. , рис. B20).

Внутренние повреждения, в основном межвитковые замыкания и короткие замыкания фазы на землю, возникающие внутри трансформаторов сухого типа, устраняются либо автоматическим выключателем, либо предохранителями, установленными на первичной стороне трансформатора.Срабатывание автоматических выключателей при использовании упорядочивается по защитам от перегрузки по току между фазой и землей.

Межвитковые неисправности требуют особого внимания:

  • Обычно они генерируют умеренные линейные сверхтоки. Например, при коротком замыкании 5% обмотки ВН линейный ток трансформатора не превышает 2 In, при коротком замыкании, затрагивающем 10% обмотки, линейный ток ограничивается примерно 3 In.
  • Предохранители не подходят для должного отключения таких токов
  • Сухие трансформаторы не оснащены дополнительными устройствами защиты, такими как DGPT, предназначенными для обнаружения внутренних повреждений.
Следовательно, внутренние неисправности, вызывающие низкий уровень перегрузки по току в линии, нельзя безопасно устранить с помощью предохранителей. Предпочтительна защита с помощью реле максимального тока с соответствующими характеристиками и настройками (например, серия реле Schneider Electric VIP).

Рис. B19 - Сухой трансформатор

Рис. B20 - Тепловое реле для защиты сухого трансформатора (Ziehl)

Селективность между защитными устройствами до и после трансформатора

Обычной практикой является обеспечение селективности между автоматическим выключателем среднего напряжения или предохранителями, установленными на первичной стороне трансформатора, и автоматическим выключателем низкого напряжения.

Характеристики защиты, запрашивающей отключение или автоматический выключатель среднего напряжения, или рабочие характеристики предохранителей при использовании должны быть такими, как в случае неисправности на выходе, автоматический выключатель низкого напряжения срабатывает только. Автоматический выключатель среднего напряжения должен оставаться замкнутым, иначе предохранитель не должен перегореть.

Кривые срабатывания предохранителей среднего напряжения, защиты среднего напряжения и автоматических выключателей низкого напряжения представлены графиками, показывающими зависимость времени срабатывания от тока.

Кривые в основном имеют обратнозависимый тип.Автоматические выключатели низкого напряжения имеют резкий разрыв, который определяет предел мгновенного действия.

Типичные кривые показаны на Рис. B21.

Селективность между автоматическим выключателем низкого напряжения и предохранителями среднего напряжения

(см. рис. B21 и рис. B22)

  • Все части кривой предохранителя среднего напряжения должны быть выше и правее кривой выключателя низкого напряжения.
  • Чтобы предохранители оставались неповрежденными (т.е. неповрежденными), должны быть выполнены два следующих условия:
    • Все части минимальной кривой преддугового предохранителя должны быть смещены вправо от кривой LV CB с коэффициентом 1.35 или больше.
      Пример: где в момент времени T кривая CB проходит через точку, соответствующую 100 A, кривая предохранителя в то же время T должна проходить через точку, соответствующую 135 A или более, и так далее.
    • Все части кривой предохранителя должны быть выше кривой предохранителя в 2 раза или более
      Пример: где при уровне тока I кривая выключения проходит через точку, соответствующую 1,5 секундам, кривая предохранителя на том же уровне тока Я должен пройти через точку, соответствующую 3 секундам или более и т. Д.

Коэффициенты 1,35 и 2 основаны на максимальных производственных допусках, данных для предохранителей среднего напряжения и автоматических выключателей низкого напряжения.

Для сравнения двух кривых, токи среднего напряжения должны быть преобразованы в эквивалентные токи низкого напряжения или наоборот.

Рис. B21 - Селективность между срабатыванием предохранителя среднего напряжения и срабатыванием выключателя низкого напряжения для защиты трансформатора

Рис. B22 - Конфигурация предохранителя среднего напряжения и автоматического выключателя низкого напряжения

Селективность между выключателем низкого напряжения и выключателем среднего напряжения

  • Все части кривой автоматического выключателя с минимальным уровнем напряжения должны быть смещены вправо от кривой автоматического выключателя низкого напряжения с коэффициентом 1.35 или больше:
    • Пример: где в момент времени T кривая LV CB проходит через точку, соответствующую 100 A, кривая MV CB в то же время T должна проходить через точку, соответствующую 135 A или более, и так далее.
  • Все части кривой MV CB должны быть выше кривой LV CB. Разница во времени между двумя кривыми должна быть не менее 0,3 с для любого значения тока.

Коэффициенты 1,35 и 0,3 с основаны на максимальных производственных допусках, указанных для трансформаторов тока среднего напряжения, реле защиты среднего напряжения и автоматических выключателей низкого напряжения.

.

Техническое обслуживание трансформатора - Техническое обслуживание, диагностика и мониторинг силовых трансформаторов

Техническое обслуживание силового трансформатора - Диагностика и мониторинг трансформатора

Введение

Статические трансформаторы, не имеющие движущихся и вращающихся частей, являются очень надежными машинами , и при правильном обслуживании может прослужить 40 лет или более. Кроме того, они не срабатывают и не перегорают при напряжении в печи (за исключением экстремальных условий), трансформаторы часто перегружаются и позволяют работать за пределами своей мощности .

Однако использование и старение электрических установок , как и других установок, является источником нормального износа электрического оборудования , который может быть ускорен такими факторами, как агрессивная среда , перегрузка или тяжелый рабочий цикл .

Другими причинами ухудшения могут быть изменения / добавления нагрузки , изменения схемы, неправильно установленные / выбранные защитные устройства и изменение условий напряжения .

Однако отказ оборудования не является неизбежным , если установлена ​​программа проверки и профилактического обслуживания .

  • Также прочтите: Трансформаторы тока (ТТ) - Типы, характеристики и применение

Создание программы регулярного профилактического обслуживания может минимизировать риск отказа оборудования и связанных с этим проблем, обнаружение скрытых отказов и - первый шаг для устранения неполадок .

Визуальный осмотр силового трансформатора

Чаще всего силовым трансформаторам уделяется визуальный осмотр , который в основном включает проверку общего внешнего состояния трансформатора и системы охлаждения .

Силовые трансформаторы необходимо регулярно проверять, чтобы проблемы могли быть обнаружены на ранней стадии и устранены до того, как потребуется капитальный ремонт .

Проверки выполняются в плановом порядке , обычно раз в неделю , хотя частота может варьироваться от компании к компании и от трансформаторов .Например, трансформатор можно проверять чаще, если есть основания полагать, что проблема возникает.

В таблице 1 показаны типы визуальных проверок, необходимых для контроля общего внешнего состояния и системы охлаждения .

Щелкните изображение, чтобы увеличить

Таблица 1 - Визуальный осмотр трансформаторов

Диагностика и мониторинг трансформатора

Мониторинг трансформатора относится к методам измерения в режиме онлайн, где упор делается на сбор соответствующих данных о целостности трансформатора, а не на по интерпретации данных.

Методы контроля трансформатора различаются в зависимости от используемого датчика, измеряемых параметров трансформатора и применяемых методов измерения. Поскольку контрольное оборудование обычно постоянно монтируется на трансформаторе, оно также должно быть надежным и недорогим.

Обмотки и устройства РПН ( РПН ) отказы преобладают; следовательно, в центре внимания большинства методов мониторинга - сбор данных о параметрах, которые можно использовать для оценки состояния обмоток и переключателей ответвлений.

Растворенные газы в масле и частичные выбросы ( PD ) - это общие контролируемые параметры, связанные с состоянием обмотки и изоляции .

Мониторинг температуры и вибрации обычно используется для оценки состояния устройства РПН .

На рисунке 1 показано распределение статистики отказов масляного трансформатора.

Рисунок 1 - Распределение статистики отказов в масляном трансформаторе

Общие параметры, используемые для контроля состояния обмоток и изоляции : PD и растворенные газы в масле ; в части мониторинга РПН температуры и вибрации .

Основные блоки контроля , используемые для диагностики трансформаторов:

  • Блок контроля температуры масла.
  • Датчик контроля уровня масла.
  • Блок контроля газа в масле.
  • Датчик контроля работы устройства РПН.
  • Блок контроля перегрузки.

Данные от датчиков и блоков мониторинга преобразуются в цифровых и аналоговых сигналов и устанавливают базовую связь в реальном времени с человеко-машинным интерфейсом и регистрацией данных .

Анализ растворенного газа в масле - это эффективный диагностический инструмент для определения проблем в работе трансформатора.

Тем не менее, этот анализ обычно выполняется за пределами предприятия, где для определения содержания газа используется сложное (и обычно дорогое) оборудование.

Чтобы снизить риск пропуска зарождающихся неисправностей из-за длительных интервалов отбора проб, разрабатываются методы мониторинга, обеспечивающие предупреждение об изменениях типов и концентраций газа, наблюдаемых в трансформаторе.Обычный анализ растворенного газа в масле выполняется после выдачи предупреждения. Несколько газов трансформатора и соответствующие источники перечислены в таблице 2.

Щелкните изображение, чтобы увеличить

Таблица 2 - Газы трансформатора и источники

Путем извлечения газа , растворенного в изоляционном масле главного трансформатора и измеряя количества шести компонентов газа на их низком уровне , можно обнаружить локальный перегрев или частичный электрический разряд в блоке в зависимости от данных анализатора и до предотвратить любые аварии раньше они встречаются .

График профилактических мероприятий и осмотра трансформатора

Периодичность технического обслуживания устанавливается с учетом требований к надежности оборудования и инструкций и рекомендаций производителей.

Работы по техническому обслуживанию могут планироваться для каждого сегмента установки в разные периоды, но в крупных отраслях промышленности обычно один или два раза в год происходит глобальная остановка для целей технического обслуживания.

NETA [1] Стандарт MTS-2007 Приложение B представляет график технического обслуживания по времени и матрицу , показанные в таблице 3.Применение матрицы распознается как справочник только .

Для правильного применения матрицы необходимо определить конкретное состояние, критичность и надежность. Применение матрицы , наряду с историческими данными испытаний и тенденциями , должно обеспечить качественную программу электрического профилактического обслуживания .

Щелкните изображение, чтобы увеличить

Таблица 3 - Матрица частоты технического обслуживания

Для трансформаторов минимальные испытания на поддержание частоты определены в том же стандарте и показаны в таблице 4.

Щелкните изображение, чтобы увеличить

Таблица 4 - Трансформаторы Периодичность проверок технического обслуживания (месяцев)

Мероприятия технического обслуживания (визуальный и механический осмотр ; электрические испытания; значения испытаний ) для каждой единицы оборудования определены в NETA Стандарт ATS-2009 и для трансформаторов можно резюмировать, как показано в Таблице 5.

Щелкните изображение, чтобы увеличить

Таблица 5 - Частота испытаний и проверок при проведении технического обслуживания трансформаторов

Действия профилактического обслуживания трансформаторов можно синтезировать следующим образом:

  • Текущие проверки
  • Отбор проб
  • Испытания
  • Ремонт
  • Мелкий ремонт
  • Средний ремонт
  • Капитальный ремонт и капитальный ремонт [2]
  • Документация и запись данных

Таблица 6 показывает обычные действия для каждого типа действий по техническому обслуживанию.

Щелкните изображение, чтобы увеличить

Таблица 6 - Обычные действия для каждого типа работ по техническому обслуживанию

Помимо специального испытательного оборудования, наиболее распространенным переносным испытательным оборудованием, используемым при обслуживании трансформаторов, является:

  • Мультиметры
  • Токоизмерительные клещи
  • Тестеры напряжения
  • Оборудование для испытаний измерительных трансформаторов
  • Оборудование для проверки реле и счетчиков
  • Тестеры изоляции ( MEGGER [3] )
  • Оборудование для проверки заземления
  • Инфракрасная камера [4] (см. Инфракрасная термография)

Также прочтите: Как найти номинал трансформатора в кВА (однофазный и трехфазный)?

Анализ масла и пробы

Во время периода технического обслуживания или после капитального ремонта необходимо собрать образец масла для проведения испытаний, определенных в стандарте IEC [5] Стандартный 60296 для FAT .

Эти испытания:

  • Межфазное натяжение ( IFT )
  • Кислотность
  • Вязкость
  • Плотность
  • Температура вспышки
  • Температура воспламенения
  • Температура застывания
  • Влажность
  • Диэлектрическая прочность
  • Коэффициент мощности ( диэлектрические потери - tan ∂ )
  • Цвет

При отборе образца необходимо принять определенные меры предосторожности, чтобы избежать загрязнения образца .

  • 1 - Используйте вспомогательный пробоотборный клапан и не используйте малое пробоотборное отверстие на стороне сливного клапана (Рисунок 2).

Рисунок 2 - Вспомогательный клапан для отбора проб

  • 2 - Промывочный дренажный клапан Рисунок 3 - Промывочный дренажный клапан
  • 3 - Промойте трубку и шприц и не отводите назад на цилиндре шприца - приложите небольшое сопротивление и позвольте давлению жидкости заполнить шприц (Рисунок 4) .

Рисунок 4 - Промывочная трубка и шприц

  • 4 - Заполненный шприц должен иметь без пузырьков , но некоторые могут образоваться позже - не выпускайте их.

Также прочтите: MCQ трансформаторов с пояснительными ответами

Анализ растворенного газа в масле (DGA)

DGA , один из наиболее ценных доступных диагностических инструментов, представляет собой процедуру, используемую для оценки состояния масляный трансформатор из анализа газов, растворенных в охлаждающей / изолирующей среде .

Это хорошо зарекомендовавший себя метод, который является рентабельным, предоставляя важную информацию в результате относительно простого неразрушающего испытания, основанного на отборе проб масла.

Хотя анализ обычно проводится в лаборатории, также доступны онлайн-устройства.

Результаты показывают многое о здоровье масла и его свойствах как изолирующей среды, включая его текущее состояние, любые происходящие изменения, эффекты деградации от перегрузки, старения, возникновения мелких неисправностей и наиболее вероятная причина серьезных поломок.

Следует отметить, что серьезная неисправность также может привести к образованию свободных газов, которые могут собираться в реле Бухгольца .

Испытания трансформатора для целей технического обслуживания и диагностики

В таблице 7 показана общая методология оценки состояния трансформатора, объединяющая текущее обслуживание и диагностику .

Щелкните изображение, чтобы увеличить

Таблица 7 - Испытания трансформатора, которые необходимо выполнить для технического обслуживания и диагностики

Изолятор Испытание

Для вводов с отводом напряжения, емкость между верхом проходного изолятора и нижнего отвода (обычно называется C1 ), а также емкость между отводом и землей (обычно называется C2 ).

Для определения потерь в вводе также проводятся испытания коэффициента мощности. C2 емкость на намного больше , чем C1 емкость .

Проходные изоляторы без отвода напряжения обычно испытывают от верхнего проводника изолятора до земли.

Результаты этого испытания сравниваются с заводскими испытаниями и / или предыдущими испытаниями для определения износа.

Около 90% отказов проходных изоляторов можно отнести к проникновению влаги , о чем свидетельствует увеличение коэффициента мощности на .

Тест анализа частотной характеристики

Анализ частотной характеристики ( SFRA ) [6] состоит из измерения импеданса обмоток трансформатора в широком диапазоне частот и сравнения результатов измерения к эталонному набору .

Различия могут указывать на повреждение трансформатора, которое может быть исследовано другими методами или внутренним осмотром.Метод развертки частоты для SFRA требует использования анализатора цепей для генерации сигнала, проведения измерений и обработки результатов.

Ультразвуковое и звуковое обнаружение неисправностей

Этот тест следует проводить, когда водорода равно , заметно увеличиваясь на в DGA.

Высокое содержание водорода означает частичный разряд , происходящий внутри трансформатора. Другие газы, такие как метан, этан и этилен , также могут увеличиваться до . Ацетилен также может присутствовать при возникновении дуги и может усиливаться.

Анализ вибрации

Вибрация и лизис сам по себе не может предсказать многие неисправности, связанные с трансформаторами, но это еще один полезный инструмент, помогающий определить состояние трансформатора .

Вибрация может быть результатом ослабленных сегментов сердечника трансформатора, ослабленных обмоток, проблем с экраном, незакрепленных деталей или неисправных подшипников в насосах охлаждения масла или вентиляторах .Следует проявлять особую осторожность при оценке источника вибрации. Часто незакрепленная крышка панели, дверца или болты / винты, лежащие на панелях управления или незакрепленные снаружи, ошибочно считались проблемами внутри резервуара.

Сопротивление изоляции жилы

Для проведения этого теста необходимо отключить преднамеренное заземление жилы .

Это может быть сложно, и для этого, возможно, придется слить немного масла.

На некоторых трансформаторах заземление сердечника выводится наружу через изолированные вводы и легко доступно .

Ожидаемые значения сопротивления изоляции составляют:

  • Новые трансформаторы: > 1000 МОм
  • Прошедший срок трансформатор: > 100 МОм

Значения между 10 и 100 МОм показывают возможных повреждение изоляции между сердечником и землей и значениями ниже 10 МОм могут вызвать деструктивных циркулирующих токов и требуют дальнейшего изучения.

Инфракрасная термография

Инфракрасная термография ( IR ) - это бесконтактный и неразрушающий способ обнаружения проблем в электрических системах .

Все электрическое и механическое оборудование излучает тепло в виде электромагнитного излучения. Инфракрасные камеры, чувствительные к тепловому излучению, могут обнаруживать и измерять разницу температур между поверхностями.

Ненормальные или неожиданные тепловые характеристики могут указывать на проблему с оборудованием, которая может привести к поломке или отказу либо вызвать пожар.

Обычный инфракрасный анализ выполняется каждые 2 или 3 года , когда оборудование находится под напряжением и при полной нагрузке, если возможно, но особые условия функционирования и окружающей среды могут потребовать проведения IR ежегодно.

ИК-анализ также следует проводить после любого обслуживания или тестирования, чтобы проверить, правильно ли восстановлены соединения, которые были нарушены. Кроме того, если IR выполняется во время заводского обогрева, результаты можно использовать в качестве основы для последующего сравнения.

Следующие компоненты трансформаторов обычно подвергаются анализу IR :

  • Бак
  • Радиаторы и система охлаждения
  • Втулки
  • РПН

Также прочтите: ТАБЛИЧКА ТРАНСФОРМАТОРА (ОБЩИЕ ТРЕБОВАНИЯ).

Бак

Необычно высокие внешние температуры или необычные тепловые характеристики баков трансформатора указывают на проблемы внутри трансформатора, такие как низкий уровень масла, циркулирующие паразитные токи, заблокированное охлаждение, ослабленные экраны, проблемы с переключателем ответвлений и т. Д.

Чрезвычайно высокие температуры могут повредить или разрушить изоляцию трансформатора и, таким образом, сократить ожидаемый срок службы.

Инспекция IR может выявить условия перегрева или неправильные тепловые схемы. IR Для сканирования и анализа требуется обученного персонала, имеющего опыта в этих методах.

Радиаторы и система охлаждения

Радиаторы необходимо проверить с помощью ИК-камеры и сравнить их друг с другом.

Охлаждающий радиатор или сегмент указывает, что клапан закрыт или радиатор или сегмент забит .

Если визуальный осмотр показывает, что клапаны открыты , радиатор или сегмент должен быть изолирован, опорожнен и удален, а блокировка устранена .

Трансформатор, работающий с пониженным охлаждением, будет иметь свой срок службы - - резко сокращается (повышенная рабочая температура составляет всего от 8 до 10 o ° C сократит срок службы трансформатора на один- половина ).

Втулки и изоляторы
a) Уровень масла

Сканирование втулок IR может показать низкого уровня масла , что потребует немедленного отключения питания и замены .

Обычно причина этого в том, что уплотнение в нижней части проходного изолятора вышло из строя , в результате чего масло попало в трансформатор . Верхнее уплотнение имеет , вероятно, неисправное , также позволяет воздуху и влаге от до попадать в верхнюю часть .

Слишком высокий уровень масла во втулках обычно означает, что уплотнение в нижней части втулки вышло из строя и масляная головка расширителя, или давление азота , вытолкнуло трансформаторное масло вверх по втулке .

Еще одна причина, по которой втулка может показывать высокий уровень масла , - это протечка верхнего уплотнения , позволяющая воде проникать в . Вода перемещается к днищу втулки, вытесняя масло вверх .

Более 90% отказов втулок связаны с входом воды через верхнее уплотнение .

Изоляторы обычно катастрофически выходят из строя , многократно разрушая главный трансформатор и близлежащее оборудование и создавая опасностей для рабочих . Предыдущие сканированные изображения IR того же ввода необходимо сравнить с текущим сканированием.

b) Соединения втулки

Втулки имеют два внутренних соединения , одно в головке , а другое намного глубже внутри, подключенное к трансформатору ils.

Оба будут видны снаружи, но соединение головки будет в верхней части втулки, а соединение катушки будет в основании втулки.

Проблемы с трещинами были обнаружены в некоторых изоляторах , которые влияют на электрическую и механическую прочность изолятора .

Когда присутствует поверхностная влажность, по поверхности изолятора протекает очень небольшой ток разряда, повышая температуру на один или два градуса.Когда изолятор треснул , разрядный ток течет вниз по трещине, а не по поверхности, и изолятор выглядит немного холоднее .

Когда трещина становится достаточно серьезной , повышение температуры на может стать очевидным .

РПН (устройство РПН )

Температура крышки устройства РПН должна быть такой же , как и сам трансформатор .

Источник тепла находится внутри корпуса устройства РПН и на значительно горячее , чем указанная температура .

Внешний отсек устройства РПН должен быть на не теплее, чем корпус трансформатора . Если он на теплее , это указывает на вероятный нагрев внутренних соединений крана .

Одна из трудностей при проверке отводов заключается в том, что все отводы не подключены во время проверки, поэтому результаты могут быть не окончательными .

[1] NETA : Международная ассоциация электрических испытаний (США). [2] . Эти работы должны выполняться специализированным персоналом .

[3] MEGGER - торговая марка , но это оборудование известно под этим названием.

[4] См. Главу 7 «Инфракрасная термография».

[5] IEC: Международная электротехническая комиссия.

[6] Только если этот тест проводился во время FAT - Заводские приемочные испытания.

Об авторе: Мануэль Болотинья
- Диплом в области электротехники - Энергетические и энергетические системы (1974 - Высший технический институт / Лиссабонский университет)
- Степень магистра в области электротехники и вычислительной техники (2017 - Факультет компьютерных технологий / Нова Лиссабонский университет)
- старший консультант по подстанциям и энергосистемам; Профессиональный инструктор

.Генераторный трансформатор

- обзор

2.2.2 Защита и управление

Защита всего оборудования - генераторов, трансформаторов, линий электропередачи и распределительных фидеров - от коротких замыканий крайне важна. Общий принцип заключается в обнаружении неисправности (короткого замыкания) и изоляции оборудования. В простейшей форме предохранитель обнаруживает неисправность по сгоранию и, таким образом, изолирует линию. В самой сложной форме микропроцессорные реле могут обнаруживать неисправность и анализировать, какие автоматические выключатели необходимо размыкать, чтобы изолировать оборудование.Подробности системы защиты описаны в главе 9 «Защита энергосистемы».

Многие другие типы управления также используются для нормальной и аварийной работы энергосистемы. Например, дистанционное управление выключателями может быть инициировано операторами вручную через систему диспетчерского управления и сбора данных (SCADA) в центре управления. Управление напряжением осуществляется автоматически генераторами, трансформаторами, реакторами и конденсаторами, но оператор может дистанционно устанавливать целевые напряжения.Управление и эксплуатация описаны в главе 8 «Эксплуатация и управление энергосистемой».

Таким образом, все эти темы можно будет изучить более подробно в следующих главах этого раздела.

.

(. 6) | Pandia.ru

б) изоляторы общие

4. Воздух, бумага и пластмассы -

а) изоляторы общие

б) общие жилы

5. при подаче высокого напряжения на изолятор

а) не проводит ток

б) проводит ток

6. изоляторы используются

а) для накопления электрического заряда

б) т) снизить напряжение

c) для предотвращения короткого замыкания между проводящими проводами

7.металлы повышают свою сопротивляемость

а) при понижении температуры

б) при повышении температуры

8. Углерод снижает сопротивление

а) при повышении температуры

б) при понижении температуры

9. Металлы имеют

а) положительный температурный коэффициент сопротивления l

б) отрицательный температурный коэффициент сопротивления l

В

Заканчивайте предложения словами с противоположным значением:

1.У проводников низкое сопротивление. 2. Ток через изоляторы проходит с большим трудом ... ....

3. Металлы - обычные проводники ... .... 4. Чтобы изоляторы проводили ток, должны быть приложены большие токи ... .... 5. Углерод снижает свое сопротивление при повышении температуры .... 6. Металлы имеют положительный температурный коэффициент сопротивления ....

С

Ответьте на следующие вопросы:

В чем разница между проводниками и изоляторами? 2.Как ток проходит через изоляторы? 3. Какие материалы обычно используются для изготовления изоляторов? 4. Какие материалы обычно используются для изготовления проводов? 5. В каком случае изоляторы проводят ток? 6. Как изменяется сопротивление при понижении температуры?

А

1 - б; 2 - а; 3 - а; 4 - а; 5 - б; 6 - а, в; 7 - б; 8 - а; 9 - а.

1. Изоляторы ... высокие

2. проводники .. легко

3. Изоляторы воздушные, бумажные, резиновые, пластмассовые

4.проводники .. низкие

5. металлы. Увеличение

6. карбон. отрицательный

1. значение сопротивления

2. с большим трудом

3. Воздух, бумага, резина, пластмассы

4. металлы

5. подано высокое напряжение

6. углерод увеличивается, металлы уменьшаются.


Урок 9

ТРАНСФОРМАТОРЫ

трансформатор

номер

передача

поворот

ядро ​​

получить

обмотка

шаг вверх

первичная обмотка

частота

вторичная обмотка

Трансформатор используется для передачи энергии; благодаря трансформатору электрическая мощность может передаваться с высоким напряжением и снижаться в точке, где она должна использоваться, до любого значения.Кроме того, трансформатор используется для изменения значения напряжения и тока в цепи.

Двухобмоточный трансформатор состоит из закрытого сердечника и двух катушек (обмоток). Первичная обмотка подключена к источнику напряжения. Он получает энергию. Вторичная обмотка подключена к сопротивлению нагрузки и подает энергию на нагрузку.

Значение напряжения на вторичной клемме зависит от количества витков в ней. Если оно равно количеству витков в первичной обмотке, то напряжение во вторичной обмотке такое же, как и в первичной,

.

Если у вторичной обмотки больше витков, чем у первичной, выходное напряжение больше входного.Напряжение во вторичной обмотке превышает напряжение в первичной во столько раз, сколько количество витков во вторичной обмотке больше, чем количество витков в первичной обмотке. Трансформатор этого типа увеличивает или увеличивает напряжение и называется повышающим трансформатором. Если у вторичной обмотки меньше витков, чем у первичной, выходное напряжение ниже, чем при понижении или понижении напряжения трансформатора, это называется понижающим трансформатором.

Сравните T1 и T2. T1 имеет железный сердечник. По этой причине он используется для токов низкой частоты. Т2 имеет воздушный сердечник и используется для высоких частот.

Распространенные неисправности трансформаторов - обрыв в обмотке, короткое замыкание между первичной и вторичной обмотками и короткое замыкание между витками. В случае неисправности трансформатора он перестает работать или работает плохо. Заменить неисправный трансформатор.

; ,. ,.

- ().. . .

. ,,,.

,,,,. ,,,,. . ,,,,. ,.

1 2. 2. . 1.

-,. ,. .

УПРАЖНЕНИЯ

А

Найдите правильный вариант. Помните:

1. используется трансформатор

а) для накопления заряда

б) для предотвращения изменения энергии

в) для передачи энергии

г) для изменения значения напряжения и тока в цепи

2.электроэнергия передается при высоком напряжении и понижается

на любое значение

а) за счет резисторов

б) за счет конденсаторов

в) за счет трансформаторов

3. трансформатор состоит из

а) только ядер

б) первичная и вторичная обмотки

в) сердечник и первичная и вторичная обмотки

4. Функция первичного

а) для предотвращения изменения напряжения

б) для подачи энергии

в) для получения энергии

г) на перевод заряда

5.функция вторичного

а) для получения энергии

б) для подачи энергии

в) для передачи энергии

г) для уменьшения стоимости, заряда

6. Применяется повышающий трансформатор:

a) для понижения или уменьшения вторичного напряжения

б) для повышения или увеличения первичного напряжения

7. используется понижающий трансформатор

а) для понижения вторичного напряжения

б) для понижения первичного напряжения.

8. трансформатор с железным сердечником

а) применяется для токов высокой частоты

б) используется для тока низкой частоты :,

9. Применяется трансформатор с воздушным сердечником

a) для токов высокой частоты и токов низкой частоты

б) только для токов высокой частоты

10. в повышающем трансформаторе

а) количество витков вторичной обмотки больше, чем количество витков

первичная

б) количество витков первичной обмотки больше числа витков вторичной

II.трансформатор заменить

а) в случае обрыва обмотки

b) в случае короткого замыкания между первичной обмоткой и

вторичный

в) в случае короткого замыкания между витками

BI

Заканчивайте предложения словами с противоположным значением:

1. Вторичная обмотка трансформатора подключена к сопротивлению нагрузки .... 2. Первичная обмотка получает энергию .... 3. Понижающий трансформатор снижает первичное напряжение.... 4. Трансформатор с воздушным сердечником используется для токов высокой частоты. .. .... 5. В повышающем трансформаторе количество витков вторичной обмотки больше, чем количество витков первичной обмотки ... ..... ..

С

Ответьте на следующие вопросы:

1. Для чего используется трансформатор? 2. Из чего состоит трансформатор? 3. Какова функция первичной обмотки? 4. Какова функция вторичной обмотки? 5. Какой тип трансформатора называется повышающим трансформатором? 6.Какой тип трансформатора используется для токов высокой частоты? 7. Какой тип трансформатора называется понижающим трансформатором? 8. Какой тип трансформатора используется для токов низкой частоты? 9. Какая связь между количеством витков в обмотках и величиной тока? 10. Каковы общие неисправности трансформатора? 11. Что делать в случае неисправности трансформатора

А

1-, д., Д. 2-, 3-, 4-в, 5-б, 6-б, 7-б, 8-б, 9-б, 10-а, 11-а, б, в.

1.Первичная обмотка ... источник напряжения

2. человек

3. ступенька вверх, .. увеличивается

4. железо ... низкое

5. понизить ... первичный ... вторичный

С

1. для передачи энергии, для изменения значения напряжения и тока

2. закрытый сердечник и две катушки

3. получает энергию

4. поставляет энергию

5. Повышает напряжение

6. воздушный стержень

7.понижает напряжение

8. сердечник железный

9. чем больше ... тем больше

10. Обрыв в обмотке, короткое замыкание между обмотками, короткое замыкание между витками

11. заменить.

Урок 10

ВИДЫ ТОКА

расход

переменный

прямой

цикл

направление

'в секунду

Ток - это прохождение электричества по цепи.Рассмотрим два основных типа тока; прямой и переменный. Постоянный ток (d. C.) Течет по проводящей цепи только в одном направлении . Он течет, если в цепь подается постоянный источник напряжения.

.

Смотрите также


Оцените статьюПлохая статьяСредненькая статьяНормальная статьяНеплохая статьяОтличная статья (проголосовало 13 средний балл: 5,00 из 5)